Comparative Transcriptome Profile of the Cytoplasmic Male Sterile and Fertile Floral Buds of Radish (Raphanus sativus L.)

文献类型: 外文期刊

第一作者: Mei, Shiyong

作者: Mei, Shiyong;Liu, Touming;Liu, Touming;Wang, Zhiwei

作者机构:

关键词: cytoplasmic male sterility;radish;Illumina sequencing;transcriptome;differentially expressed genes

期刊名称:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES ( 影响因子:5.923; 五年影响因子:6.132 )

ISSN: 1422-0067

年卷期: 2016 年 17 卷 1 期

页码:

收录情况: SCI

摘要: Radish cytoplasmic male sterility (CMS) has been widely used for breeding in Raphanus and Brassica genera. However, the detailed regulation network of the male sterility remains to be determined. Our previous work has shown that the abnormalities in a CMS radish appeared shortly after the tetrad stage when microspores were malformed and the tapetal cells grew abnormally large. In this work, histological analysis shows that anthers are at the tetrad stage when the radish buds are about 1.5 mm in length. Furthermore, a high throughput RNA sequencing technology was employed to characterize the transcriptome of radish buds with length about 1.5 mm from two CMS lines possessing the CMS-inducing orf138 gene and corresponding near-isogenic maintainer lines. A total of 67,140 unigenes were functionally annotated. Functional terms for these genes are significantly enriched in 55 Gene Ontology (GO) groups and 323 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The transcriptome detected transcripts for 72 out of a total of 79 protein genes encoded in the chloroplast genome from radish. In contrast, the radish mitochondrial genome contains 34 protein genes, but only 16 protein transcripts were detected from the transcriptome. The transcriptome comparison between CMS and near-isogenic maintainer lines revealed 539 differentially expressed genes (DEGs), indicating that the false positive rate for comparative transcriptome profiling was clearly decreased using two groups of CMS/maintainer lines with different nuclear background. The level of 127 transcripts was increased and 412 transcripts were decreased in the CMS lines. No change in levels of transcripts except CMS-inducing orf138 was identified from the mitochondrial and chloroplast genomes. Some DEGs which would be associated with the CMS, encoding MYB and bHLH transcription factors, pentatricopeptide repeat (PPR) proteins, heat shock transcription factors (HSFs) and heat shock proteins (HSPs), are discussed. The transcriptome dataset and comparative analysis will provide an important resource for further understanding anther development, the CMS mechanism and to improve molecular breeding in radish.

分类号:

  • 相关文献

[1]Genome-wide transcriptional changes of ramie (Boehmeria nivea L. Gaud) in response to root-lesion nematode infection. Tang, Shouwei.

[2]Heterozygous alleles restore male fertility to cytoplasmic male-sterile radish (Raphanus sativus L.): a case of overdominance. Wang, Zhi Wei,Wang, Chuan,Gao, Lei,Zhou, Yuan,Wang, Ting,Wang, Chuan,Mei, Shi Yong,Xiang, Chang Ping. 2013

[3]A chimeric Rfo gene generated by intergenic recombination cosegregates with the fertility restorer phenotype for cytoplasmic male sterility in radish. Wang, Zhi Wei,Zhang, Li Jun,Chen, Jie,Zhou, Yuan,Wang, Ting,Wang, Zhi Wei,Xiang, Chang Ping,Zhang, Li Jun,Chen, Jie,Mei, Shi Yong. 2010

[4]Development of PCR-based markers linked to a restorer gene for cytoplasmic male sterility in radish (Raphanus sativus L.). Wang, Zhiwei,Xiang, Changping,Mei, Shiyong. 2006

[5]Identification of promoter exchange at a male fertility restorer locus for cytoplasmic male sterility in radish (Raphanus sativus L.). Wang, Zhi Wei,Cai, Qing Ze,Wang, Zhi Wei,De Wang, Chuan,Gao, Lei,Zhou, Yuan,Wang, Ting,De Wang, Chuan,Mei, Shi Yong,Mei, Shi Yong.

[6]Transcriptome analysis of the roots at early and late seedling stages using Illumina paired-end sequencing and development of EST-SSR markers in radish. Wang, Shufen,He, Qiwei,Liu, Xianxian,Xu, Wenling,Li, Libin,Gao, Jianwei,Wang, Fengde,Wang, Xiufeng. 2012

[7]Deep transcriptome sequencing of rhizome and aerial-shoot in Sorghum propinquum. Zhang, Ting,Zhao, Xiuqin,Wang, Wensheng,Huang, Liyu,Liu, Xiaoyue,Zong, Ying,Zhu, Linghua,Fu, Binying,Li, Zhikang,Zhang, Ting,Yang, Daichang.

[8]Changes in the transcriptomic profiles of maize roots in response to iron-deficiency stress. Li, Yan,Song, Xuejiao,Yin, Zhaohua,Huang, Rong,Zhang, Chunqing,Wang, Nian,Zhao, Fengtao.

[9]Large-scale development of expressed sequence tag-derived simple sequence repeat markers by deep transcriptome sequencing in garlic (Allium sativum L.). Liu, Touming.

[10]Testes transcriptome profiles of the anadromous fish Coilia nasus during the onset of spermatogenesis. Zhou, Yan-Feng,Duan, Jin-Rong,Liu, Kai,Xu, Dong-Po,Zhang, Min-Ying,Fang, Di-An,Xu, Pao,Fang, Di-An,Xu, Pao.

[11]De novo assembly and transcriptome analysis of two contrary tillering mutants to learn the mechanisms of tillers outgrowth in switchgrass (Panicum virgatum L.). Kaijie Xu,Fengli Sun,Guaiqiang Chai,Yongfeng Wang,Lili Shi,Shudong Liu,Yajun Xi. 2015

[12]Transcriptome Analysis of Cadmium-Treated Roots in Maize (Zea mays L.). Yue, Runqing,Lu, Caixia,Qi, Jianshuang,Han, Xiaohua,Yan, Shufeng,Guo, Shulei,Liu, Lu,Fu, Xiaolei,Chen, Nana,Yin, Haiyan,Chi, Haifeng,Tie, Shuanggui,Yue, Runqing,Lu, Caixia,Qi, Jianshuang,Han, Xiaohua,Yan, Shufeng,Guo, Shulei,Liu, Lu,Fu, Xiaolei,Chen, Nana,Yin, Haiyan,Chi, Haifeng,Tie, Shuanggui. 2016

[13]De novo assembly and analysis of tissue-specific transcriptomes revealed the tissue-specific genes and profile of immunity from Strongylocentrotus intermedius. Chen, Yadong,Chang, Yaqing,Wang, Xiuli,Qiu, Xuemei,Liu, Yang,Chen, Yadong.

[14]Transcriptome analysis of salt-responsive genes and SSR marker exploration in Carex rigescens using RNA-seq. Li Ming-na,Feng Zi-rong,Sun Yan,Zhang, Kun,Cao Shi-hao,Long Rui-cai,Kang Jun-mei,Wang Zhen,Liu Feng-qi. 2018

[15]De novo transcriptomic analysis of the female and male adults of the blood fluke Schistosoma turkestanicum. Chang, Qiao-Cheng,Wang, Chun-Ren,Liu, Guo-Hua,Xu, Min-Jun,Zhu, Xing-Quan,Xu, Min-Jun,Gao, Jun-Feng,Zhu, Xing-Quan. 2016

[16]Comparative transcriptome profiling of the fertile and sterile flower buds of a dominant genic male sterile line in sesame (Sesamum indicum L.). Liu, Hongyan,Zhou, Fang,Yang, Minmin,Zhou, Ting,Zhao, Yingzhong,Tan, Mingpu,Yu, Haijuan,Li, Liang. 2016

[17]Transcriptome and Gene Expression Analysis of Cylas formicarius (Coleoptera: Brentidae) During Different Development Stages. Ma, Juan,Wang, Rongyan,Li, Xiuhua,Gao, Bo,Chen, Shulong. 2016

[18]Transciptome analysis reveals flavonoid biosynthesis regulation and simple sequence repeats in yam (Dioscorea alata L.) tubers. Wu, Zhi-Gang,Jiang, Wu,Bao, Xiao-Qing,Chen, Song-Lin,Tao, Zheng-Ming,Bao, Xiao-Qing,Chen, Song-Lin,Mantri, Nitin. 2015

[19]Transcriptome profiling reveals differentially expressed genes associated with wizened flower bud formation in Chinese pear (Pyrus bretschneideri Rehd.). Liu, Ya,Zhang, Hu Ping,Gu, Chao,Tao, Shu Tian,Qi, Kai Jie,Zhang, Shao Ling,Wang, Dong Sheng,Guo, Xian Ping.

[20]Ovarian transcriptomic analysis of Shan Ma ducks at peak and late stages of egg production. Zhu, ZhiMing,Miao, ZhongWei,Xin, QingWu,Li, Li,Huang, QinLou,Zheng, NenZhu,Chen, HongPing,Lin, RuLong.

作者其他论文 更多>>