Soil Salt Accumulation and Crop Yield under Long-Term Irrigation with Saline Water

文献类型: 外文期刊

第一作者: Feng, Di

作者: Feng, Di;Sun, Jingsheng;Zhang, Junpeng;Cao, Caiyun;Shao, Liwei;Li, Fusheng;Dang, Hongkai;Sun, Chitao

作者机构:

关键词: Cotton;Forage rye;Desalinization;Salt balance equation;Profile distribution

期刊名称:JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING ( 影响因子:1.879; 五年影响因子:1.985 )

ISSN: 0733-9437

年卷期: 2015 年 141 卷 12 期

页码:

收录情况: SCI

摘要: An experiment has been conducted to investigate the salt evolution process in soil and the response of crops to continuous irrigation with saline water under no artificial drainage from 2006 to 2013. A total of five salinity levels of saline water included 1.3, 3.4, 7.1, 10.6, and 14.1 dS/m, denoted as F1, F2, F3, F4, and F5. Results indicate that salt accumulation was significantly accelerated with the increased ratio of irrigation amount to precipitation (I/P), which was caused by higher annual irrigation times and irrigation quota, but soil salinity was reduced with the decline of I/P. Compared with initial soil salinity in 2006, final soil salinity in 2013 was decreased by 8.7 and 10.1% in the F1 and F2 treatments, but was increased by 7.3, 24.5, and 65.2% in the F3, F4, and F5 treatments. The peak salt values in the soil profile demonstrated a tendency to move up with the increasing salinity of irrigation water, suggesting that salt accumulated more readily in higher salinity treatments. Cotton yield in salinity treatments was close to that of fresh water (F1) when irrigation water salinity was below 7.1 dS/m, but reduced when irrigation water salinity was over 7.1 dS/m. The salt tolerance of forage rye was lower than that of cotton, and the relative forage rye yield dropped as soil salinity increased over the experimental years. Therefore, irrigation water salinity must be lower than 7.1 dS/m in cotton monoculture to keep the cotton yield close to that of freshwater treatment and reduce soil salt accumulation. DOI: 10.1061/(ASCE)IR.1943-4774.0000924. (C) 2015 American Society of Civil Engineers.

分类号:

  • 相关文献

[1]Histological and Ultrastructural Observation Reveals Significant Cellular Differences between Agrobacterium Transformed Embryogenic and Non-embryogenic Calli of Cotton. Shang, Hai-Hong,Liu, Chuan-Liang,Zhang, Chao-Jun,Li, Feng-Lian,Hong, Wei-Dong,Li, Fu-Guang.

[2]A simplified pruning method for profitable cotton production in the Yellow River valley of China. Dai, Jianlong,Luo, Zhen,Li, Weijiang,Tang, Wei,Zhang, Dongmei,Lu, Hequan,Li, Zhenhuai,Xin, Chengsong,Kong, Xiangqiang,Eneji, A. Egrinya,Dong, Hezhong.

[3]Dry mycelium of Penicillium chrysogenum induces expression of pathogenesis-related protein genes and resistance against wilt diseases in Bt transgenic cotton. Chen, Suiyun,Dong, Hezhong,Fan, Yuqin,Li, Weijiang,Cohen, Yigal. 2006

[4]Effects of Soil Salinity and Plant Density on Yield and Leaf Senescence of Field-Grown Cotton. Zhang, H. J.,Dong, H. Z.,Li, W. J.,Zhang, D. M.,Zhang, H. J.. 2012

[5]Removal of early fruiting branches impacts leaf senescence and yield by altering the sink/source ratio of field-grown cotton. Chen, Yizhen,Dong, Hezhong,Chen, Yizhen,Kong, Xiangqiang,Dong, Hezhong,Kong, Xiangqiang,Dong, Hezhong. 2018

[6]An Improved CTAB-Ammonium Acetate Method for Total RNA Isolation from Cotton. Ding, Qi,Zeng, Jun,He, Xin-Qiang,Zhao, Lu,Fan, Shou-Jin,Wang, Fu-Rong,Zhang, Jun. 2012

[7]Yield, quality and leaf senescence of cotton grown at varying planting dates and plant densities in the Yellow River Valley of China. Dong, HZ,Li, WJ,Tang, W,Li, ZH,Zhang, DM,Niu, YH. 2006

[8]Dry mycelium of Penicillium chrysogenum protects cotton plants against wilt diseases and increases yield under field conditions. Dong, HZ,Zhang, XK,Choen, Y,Zhou, Y,Li, WJ,Li, ZH. 2006

[9]Lint yield and nitrogen use efficiency of field-grown cotton vary with soil salinity and nitrogen application rate. Zhang, Dongmei,Li, Weijiang,Xin, Chengsong,Tang, Wei,Eneji, A. Egrinya,Dong, Hezhong,Eneji, A. Egrinya. 2012

[10]IMPROVED NUTRIENT UPTAKE ENHANCES COTTON GROWTH AND SALINITY TOLERANCE IN SALINE MEDIA. Dai, J. L.,Duan, L. S.,Dong, H. Z.,Dai, J. L.. 2014

[11]Unequal salt distribution in the root zone increases growth and yield of cotton. Dong, Hehzong,Kong, Xianggiang,Luo, Zhen,Li, Weijiang,Xin, Chengsong. 2010

[12]Genetic improvement of cotton tolerance to salinity stress. Ma, Xinrong,Dong, Hezhong,Li, Weijiang,Ma, Xinrong. 2011

[13]Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility. Dong, Hezhong,Kong, Xiangqiang,Li, Weijiang,Tang, Wei,Zhang, Dongmei. 2010

[14]Effects of non-uniform root zone salinity on water use, Na+ recirculation, and Na+ and H+ flux in cotton. Kong, Xiangqiang,Luo, Zhen,Dong, Hezhong,Eneji, A. Egrinya,Li, Weijiang,Eneji, A. Egrinya. 2012

[15]Effects of cotton rootstock on endogenous cytokinins and abscisic acid in xylem sap and leaves in relation to leaf senescence. Dong, Hezhong,Li, Weijiang,Zhang, Dongmei,Dong, Hezhong,Niu, Yuehua. 2008

[16]Genetic fine mapping and candidate gene analysis of the Gossypium hirsutum Ligon lintless-1 (Li1) mutant on chromosome 22(D). Yurong Jiang,Mingquan Ding,Yuefen Cao,Fen Yang,Hua Zhang,Shae He,Huaqin Dai,Huanfeng Hao,Junkang Rong.

[17]Review of the technology for high-yielding and efficient cotton cultivation in the northwest inland cotton-growing region of China. Lu Feng,Jianlong Dai,Dong, Hezhong,Liwen Tian,Huijun Zhang,Weijiang Li,Hezhong Dong.

[18]A Genome-Scale Analysis of the PIN Gene Family Reveals Its Functions in Cotton Fiber Development. Yuzhou Zhang,Peng He,Zuoren Yang,Xiao, Guanghui,Yu, Jianing,Gai Huang,Limin Wang,Chaoyou Pang,Hui Xiao,Peng Zhao,Jianing Yu,Guanghui Xiao. 2017

[19]Identification of the genes and pathways associated with pigment gland morphogenesis in cotton by transcriptome profiling of near-isogenic lines. Quan Sun,Shengwei Li,Min Chen,Yingfan Cai,Jianchuan Mo,Xiaohong He,Huaizhong Jiang,JinggaoLiu,Kairong Lei.

[20]The cloning and sequencing of a cDNA encoding a WD repeat protein in cotton (Gossypium hirsutum L.). HONG Y. DUAN,FU G. LI,XU D. WU,DONG M. MA,MAO WANG,YU X. HOU.

作者其他论文 更多>>