Photosynthetic characteristics of the subtending leaf of cotton boll at different fruiting branch nodes and their relationships with lint yield and fiber quality

文献类型: 外文期刊

第一作者: Jingran Liu;;Yali Meng

作者: Jingran Liu;Yali Meng;Fengjuan Lv;Ji Chen;Yina Ma;Youhua Wang;Binglin Chen;Lei Zhang;Zhiguo Zhou

作者机构:

关键词: cotton (Gossypium hirsutum L.);subtending leaf of cotton boll;fruiting branch nodes;chlorophyll;photosynthesis;yield and quality

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2015 年 6 卷

页码:

收录情况: SCI

摘要: To investigate photosynthetic characteristics of the subtending leaf at the 2-3rd and 10-11th fruiting branch (FBN, FB2-3, and FB10-11), and their relationship with cotton yield and quality, field experiments were conducted using two cotton cultivars, Kemian 1 and Sumian 15. The results showed that with FBN increasing, chlorophyll (Chl) components, Pn and non-photochemical quenching (NPQ) in the subtending leaf significantly declined, while soluble sugar, amino acid and their ratio (C-SS/C-AA) as well as F-v/F-m increased. These results indicated that (1) non-radiative dissipation of excess light energy at FB2-3 was reduced to improve solar energy utilization efficiency to compensate for lower Pn, (2) higher NPQ at FB10-11 played a role in leaf photo-damage avoidance, (3) boll weight was related to the C-SS/C-AA ratio rather than carbohydrates content alone, (4) with FBN increasing, lint biomass and lint/seed ratio increased significantly, but lint yield decreased due to lower relative amount of bolls, and (5) the decreases in Pn, sucrose content and C-SS/C-AA in the subtending leaf at FB2-3 resulted in lower boll weight and fiber strength.

分类号:

  • 相关文献

[1]Photosynthetic characteristics of the subtending leaf and the relationships with lint yield and fiber quality in the late-planted cotton. Jingran Liu,Yali Meng,Binglin Chen,Zhiguo Zhou,Yina Ma,Fengjuan Lv,Ji Chen,Youhua Wang.

[2]5-aminolevulinic acid improves salt tolerance mediated by regulation of tetrapyrrole and proline metabolism in Brassica napus L. seedlings under NaCl stress. Xiong, Jun-Lan,Wang, Hang-Chao,Tan, Xiao-Yu,Zhang, Chun-Lei,Zhang, Chun-Lei,Naeem, Muhammad Shahbaz. 2018

[3]RNA-seq analysis reveals a key role of brassinolide-regulated pathways in NaCl-stressed cotton. Shu, H. M.,Guo, S. Q.,Gong, Y. Y.,Jiang, L.,Zhu, J. W.,Ni, W. C.. 2017

[4]Relationships between soil respiration and photosynthesis-related spectral vegetation indices in two cropland ecosystems. Huang, Ni,Niu, Zheng,Zhan, Yulin,Xu, Shiguang,Wu, Chaoyang,Gao, Shuai,Hou, Xuehui,Cai, Dewen,Huang, Ni,Xu, Shiguang,Hou, Xuehui,Cai, Dewen,Tappert, Michelle C.,Huang, Wenjiang.

[5]Effects of Foliar Application of Various Zinc Fertilizers with Organosilicone on Correcting Citrus Zinc Deficiency. Peng, Liang-Zhi.

[6]SHALLOT-LIKE1 Is a KANADI Transcription Factor That Modulates Rice Leaf Rolling by Regulating Leaf Abaxial Cell Development. Xu, Qian,Xue, Hong-Wei,Zhang, Guang-Heng,Zhu, Xu-Dong,Qian, Qian.

[7]Transcriptome analysis of pale-green leaf rice reveals photosynthetic regulatory pathways. Zhao, Xia,Feng, Baohua,Chen, Tingting,Zhang, Caixia,Tao, Longxing,Fu, Guanfu,Zhao, Xia. 2017

[8]Over-expression of ApKUP3 enhances potassium nutrition and drought tolerance in transgenic rice. Song, Z. -Z.,Song, Z. -Z.,Yang, S. -Y.,Su, Y. -H.,Yang, S. -Y.,Zuo, J.,Zuo, J..

[9]Yield and quality responses, plant metabolism and metal distribution pattern in aromatic rice under lead (Pb) toxicity. Ashraf, Umair,Tang, Xiangru,Ashraf, Umair,Tang, Xiangru.

[10]Effect of late planting and shading on cotton yield and fiber quality formation. Liu, Jingran,Meng, Yali,Chen, Ji,Lv, Fengjuan,Ma, Yina,Chen, Binglin,Wang, Youhua,Zhou, Zhiguo,Liu, Jingran,Oosterhuis, Derrick M..

[11]Response of the enzymes to nitrogen applications in cotton fiber (Gossypium hirsutum L.) and their relationships with fiber strength. Wang YouHua,Feng Ying,Xu NaiYin,Chen BingLin,Ma RongHui,Zhou ZhiGuo,Xu NaiYin. 2009

[12]Development of glyphosate-tolerant transgenic cotton plants harboring the G2-aroA gene. Zhang Xiao-bing,Tang Qiao-ling,Wang Xu-jing,Wang Zhi-xing,Zhang Xiao-bing. 2017

[13]Relationship between plant canopy characteristics and photosynthetic productivity in diverse cultivars of cotton (Gossypium hirsutum L.). Feng, Guoyi,Luo, Honghai,Zhang, Yali,Gou, Ling,Yao, Yandi,Zhang, Wangfeng,Feng, Guoyi,Lin, Yongzeng. 2016

[14]Effect of cropping system on cotton biomass accumulation and yield formation in double-cropped wheat-cotton. Du, X.,Chen, B.,Meng, Y.,Zhao, W.,Zhang, Y.,Shen, T.,Wang, Y.,Zhou, Z.,Du, X.. 2016

[15]Integration and Characterization of T-DNA Insertion in Upland Cotton. Xiaojie YANG,Fuguang LI,Xueyan ZHANG,Kun LIU,Qianhua WANG,Chaojun ZHANG,Chuanliang LIU,Wei ZHU,Guofang SHAN,Chee-Kok CHIN,Weiping FANG. 2013

[16]Mitochondrial SCAR and SSR Markers for distinguishing cytoplasmic male sterile lines from their isogenic maintainer lines in cotton. Zhang, Xiao,Meng, Zhigang,Zhou, Tao,Sun, Guoqing,Shi, Ji,Zhang, Rui,Guo, Sandui,Zhang, Xiao,Yu, Yuanhua.

[17]Plant density influences fiber sucrose metabolism in relation to cotton fiber quality. Meng, Yali,Lv, Fengjuan,Zhao, Wenqing,Chen, Ji,Zhu, Lili,Wang, Youhua,Chen, Binglin,Zhou, Zhiguo,Lv, Fengjuan.

[18]Overexpression of an Aeluropus littoralis Parl. potassium transporter gene, AlHAK1, in cotton enhances potassium uptake and salt tolerance. Liu, J. F.,Zhang, S. L.,Tang, H. L.,Dong, L. J.,Wu, L. Z.,Liu, L. D.,Che, W. L..

[19]Effects of wheat straw incorporation in cotton-wheat double cropping system on nutrient status and growth in cotton. Yu, Chaoran,Wang, Xiaojun,Hu, Bo,Meng, Yali,Zhou, Zhiguo,Yang, Changqin,Liu, Ruixian,Sui, Ning.

[20]Nitrogen use efficiency of cotton (Gossypium hirsutum L.) as influenced by wheat-cotton cropping systems. Du, Xiangbei,Chen, Binglin,Zhang, Yuxiao,Zhao, Wenqing,Shen, Tianyao,Zhou, Zhiguo,Meng, Yali,Du, Xiangbei.

作者其他论文 更多>>