eEF1A Interacts with the NS5A Protein and Inhibits the Growth of Classical Swine Fever Virus

文献类型: 外文期刊

第一作者: Li, Su

作者: Li, Su;Feng, Shuo;Wang, Jing-Han;He, Wen-Rui;Qin, Hua-Yang;Dong, Hong;Li, Lian-Feng;Yu, Shao-Xiong;Li, Yongfeng;Qiu, Hua-Ji

作者机构:

关键词: classical swine fever virus;virus-host interactions;NS5A;eukaryotic elongation factor 1A;internal ribosome entry site

期刊名称:VIRUSES-BASEL ( 影响因子:5.048; 五年影响因子:5.127 )

ISSN: 1999-4915

年卷期: 2015 年 7 卷 8 期

页码:

收录情况: SCI

摘要: The NS5A protein of classical swine fever virus (CSFV) is involved in the RNA synthesis and viral replication. However, the NS5A-interacting cellular proteins engaged in the CSFV replication are poorly defined. Using yeast two-hybrid screen, the eukaryotic elongation factor 1A (eEF1A) was identified to be an NS5A-binding partner. The NS5A-eEF1A interaction was confirmed by coimmunoprecipitation, glutathione S-transferase (GST) pulldown and laser confocal microscopy assays. The domain I of eEF1A was shown to be critical for the NS5A-eEF1A interaction. Overexpression of eEF1A suppressed the CSFV growth markedly, and conversely, knockdown of eEF1A enhanced the CSFV replication significantly. Furthermore, eEF1A, as well as NS5A, was found to reduce the translation efficiency of the internal ribosome entry site (IRES) of CSFV in a dose-dependent manner, as demonstrated by luciferase reporter assay. Streptavidin pulldown assay revealed that eEF1A could bind to the CSFV IRES. Collectively, our results suggest that eEF1A interacts with NS5A and negatively regulates the growth of CSFV.

分类号:

  • 相关文献

[1]eEF1G interaction with foot-and-mouth disease virus nonstructural protein 2B: Identification by yeast two-hybrid system. Zhang, Zhongwang,Pan, Li,Ding, Yaozhong,Lv, Jianliang,Zhou, Peng,Fang, Yuzhen,Liu, Xinsheng,Zhang, Yongguang,Wang, Yonglu,Zhang, Zhongwang,Pan, Li,Ding, Yaozhong,Lv, Jianliang,Zhou, Peng,Fang, Yuzhen,Liu, Xinsheng,Zhang, Yongguang,Wang, Yonglu. 2017

[2]Long Non-Coding RNAs: emerging and versatile Regulators in Host-virus interactions. Meng, Xing-Yu,Luo, Yuzi,Anwar, Muhammad Naveed,Sun, Yuan,Gao, Yao,Zhang, Huawei,Qiu, Hua-Ji,Munir, Muhammad. 2017

[3]Effect of the nucleotides surrounding the start codon on the translation of foot-and-mouth disease virus RNA. Ma, X. X.,Feng, Y. P.,Ma, Z. R.,Gu, Y. X.,Ma, X. X.,Zhou, J. H..

[4]Multiple microRNAs targeted to internal ribosome entry site against foot-and-mouth disease virus infection in vitro and in vivo. Chang, Yanyan,Dou, Yongxi,Bao, Huifang,Luo, Xuenong,Liu, Xuerong,Mu, Kebin,Liu, Zaixin,Liu, Xiangtao,Cai, Xuepeng,Chang, Yanyan,Liu, Xuerong,Mu, Kebin,Cai, Xuepeng. 2014

[5]Genome and Molecular Characterization of a CSFV Strain Isolated from a CSF Outbreak in South China. Shen, Hai-Yan,Wang, Jia-Ying,Dong, Xiao-Ying,Zhao, Ming-Qiu,Kang, Yanmei,Li, Yin-Guang,Pei, Jing-Jing,Liao, Ming,Ju, Chun-Mei,Yi, Lin,Hu, Yongming,Chen, Jin-Ding,Shen, Hai-Yan. 2013

[6]In vitro inhibition of the replication of classical swine fever virus by capsid-targeted virus inactivation. Wang, Yu-Fei,Wang, Zhong-Hua,Li, Yan,Zhang, Xing-Juan,Sun, Yuan,Li, Miao,Qiu, Hua-Ji. 2010

[7]Identification of host cell binding peptide from an overlapping peptide library for inhibition of classical swine fever virus infection. Li, Xuewu,Wang, Li,Zhao, Dong,Zhang, Gaiping,Luo, Jun,Deng, Ruiguang,Yang, Yanyan. 2011

[8]The protective immune response induced by B cell epitope of classical swine fever virus glycoprotein E2. Liu, SG,Tu, CC,Wang, CL,Yu, XL,Wu, JM,Guo, SP,Shao, ML,Gong, Q,Zhu, QH,Kong, XG. 2006

[9]Generation of a Recombinant Baculovirus Expressing The E2 Protein of Classical Swine Fever Virus and Its Immunogenicity in a Mouse Model. Miao, Li,Wang, Yu-Fei,Yu, Wang,Hui, Gao,Na, Li,Yuan, Sun,Liang, Bing-Bing,Qiu, Hua-Ji. 2009

[10]A multiplex nested RT-PCR for the detection and differentiation of wild-type viruses from C-strain vaccine of classical swine fever virus. Li, Yan,Zhao, Jian-Jun,Li, Na,Shi, Zixue,Cheng, Dan,Zhu, Qing-Hu,Tu, Changchun,Tong, Guang-Zhi,Qiu, Hua-Ji. 2007

[11]RNA interference screening of interferon-stimulated genes with antiviral activities against classical swine fever virus using a reporter virus. Wang, Xiao,Li, Yongfeng,Li, Lian-Feng,Shen, Liang,Zhang, Lingkai,Yu, Jiahui,Luo, Yuzi,Sun, Yuan,Li, Su,Qiu, Hua-Ji.

[12]Specific ligands for classical swine fever virus screened from landscape phage display library. Yin, Long,Luo, Yuzi,Du, Min,Qiu, Hua-Ji,Yin, Long,Liang, Bo,Wang, Fei,Liu, Aihua,Yin, Long,Wang, Fei,Liu, Aihua,Petrenko, Valery A..

[13]Development and evaluation of rapid detection of classical swine fever virus by reverse transcription loop-mediated isothermal amplification (RT-LAMP). Yin, Shuanghui,Shang, Youjun,Zhou, Guangqing,Tian, Hong,Liu, Yanhong,Cai, Xuepeng,Liu, Xiangtao.

[14]Development of a triplex TaqMan real-time RT-PCR assay for differential detection of wild-type and HCLV vaccine strains of classical swine fever virus and bovine viral diarrhea virus 1. Zhang, Xing-Juan,Han, Qiu-Ying,Sun, Yuan,Zhang, Xin,Qiu, Hua-Ji.

[15]Pre-Clinical Evaluation of a Real-Time PCR Assay on a Portable Instrument as a Possible Field Diagnostic Tool: Experiences from the Testing of Clinical Samples for African and Classical Swine Fever Viruses. Liu, L.,Stahl, K.,Belak, S.,Liu, L.,Stahl, K.,Belak, S.,Liu, L.,Luo, Y.,Qiu, H. -J.,Luo, Y.,Qiu, H. -J.,Accensi, F.,Ganges, L.,Rodriguez, F.,Accensi, F.,Rodriguez, F.,Shan, H.,Belak, S..

[16]Efficacy evaluation of the C-strain-based vaccines against the subgenotype 2.1d classical swine fever virus emerging in China. Luo, Yuzi,Ji, Shengwei,Lei, Jian-Lin,Xian, Guang-Tao,Liu, Yan,Gao, Yao,Meng, Xing-Yu,Zheng, Guanglai,Zhang, En-Yu,Wang, Yimin,Du, Ming-Liang,Li, Yongfeng,Li, Su,He, Xi-Jun,Sun, Yuan,Qiu, Hua-Ji.

[17]Enhanced immunity against classical swine fever in pigs induced by prime-boost immunization using an alphavirus replicon-vectored DNA vaccine and a recombinant adenovirus. Sun, Yuan,Li, Na,Li, Hong-Yu,Li, Miao,Qiu, Hua-Ji. 2010

[18]Comparison of the protective efficacy of recombinant adenoviruses against classical swine fever. Sun, Yuan,Li, Hong-Yu,Zhang, Xing-Juan,Chang, Tian-Ming,He, Fan,Wang, Xiang-Peng,Liu, Da-Fei,Qiu, Hua-Ji. 2011

[19]Development of a loop-mediated isothermal amplification for visual detection of the HCLV vaccine against classical swine fever in China. Zhang, Xing-Juan,Han, Qiu-Ying,Sun, Yuan,Qiu, Hua-Ji,Belak, Sandor,Liu, Lihong,Belak, Sandor,Liu, Lihong. 2011

[20]Genetic Typing of Classical Swine Fever Virus Isolates from China. Sun, S. -Q.,Yin, S. -H.,Guo, H. -C.,Jin, Y.,Shang, Y. -J.,Liu, X. -T.. 2013

作者其他论文 更多>>