Wnt antagonist, secreted frizzled-related protein 1, is involved in prenatal skeletal muscle development and is a target of miRNA-1/206 in pigs

文献类型: 外文期刊

第一作者: Yang, Yalan

作者: Yang, Yalan;Sun, Wei;Wang, Ruiqi;Zhou, Rong;Tang, Zhonglin;Li, Kui;Yang, Yalan;Tang, Zhonglin;Li, Kui;Sun, Wei;Lei, Chuzhao

作者机构:

关键词: SFRP1;miRNA-206;miRNA-1;Skeletal muscle;Development;Pig

期刊名称:BMC MOLECULAR BIOLOGY ( 影响因子:2.946; 五年影响因子:3.192 )

ISSN: 1471-2199

年卷期: 2015 年 16 卷

页码:

收录情况: SCI

摘要: Background: The Wnt signaling pathway is involved in the control of cell proliferation and differentiation during skeletal muscle development. Secreted frizzled-related proteins (SFRPs), such as SFRP1, function as inhibitors of Wnt signaling. MicroRNA-1/206(miRNA-1/206) is specifically expressed in skeletal muscle and play a critical role in myogenesis. The miRNA-mRNA profiles and bioinformatics study suggested that the SFRP1 gene was potentially regulated by miRNA-1/206 during porcine skeletal muscle development. Methods: To understand the function of SFRP1 and miRNA-1/206 in swine myogenesis, we first predicted the targets of miRNA-1/206 with the TargetScan and PicTar programs, and analyzed the molecular characterization of the porcine SFRP1 gene. We performed a temporal-spatial expression analysis of SFRP1 mRNA and miRNA-206 in Tongcheng pigs (a Chinese indigenous breed) by quantitative real-time polymerase chain reaction, and conducted the co-expression analyses of SFRP1 and miRNA-1/206. Subsequently, the interaction between SFRP1 and miRNA-1/206 was validated via dual luciferase and Western blot assays. Results: The bioinformatics analysis predicted SFRP1 to be a target of miRNA-1/206. The expression level of the SFRP1 was highly varied across numerous pig tissues and it was down-regulated during porcine skeletal muscle development. The expression level of the SFRP1 was significantly higher in the embryonic skeletal compared with postnatal skeletal muscle, whereas miR-206 showed the inverse pattern of expression. A significant negative correlation was observed between the expression of miR-1/206 and SFRP1 during porcine skeletal muscle development (p < 0.05). Dual luciferase assay and Western-blot results demonstrated that SFRP1 was a target of miR-1/206 in porcine iliac endothelial cells. Conclusions: Our results indicate that the SFRP1 gene is regulated by miR-1/206 and potentially affects skeletal muscle development. These findings increase understanding of the biological functions and the regulation of the SFRP1 gene in mammals.

分类号:

  • 相关文献

[1]SFRP2 affects prenatal muscle development and is regulated by microRNA-1/206 in pigs. Ma Yan-jiao,Ma Yan-jiao,Yang Ya-lan,Zhou Rong,Li Kui,Tang Zhong-lin,Sun Wei.

[2]CNN3 is regulated by microrna-1 during muscle development in pigs. Tang, Zhonglin,Liang, Ruyi,Zhao, Shuanping,Wang, Ruiqi,Li, Kui,Liang, Ruyi,Huang, Ruihua.

[3]OLFML3 expression is decreased during prenatal muscle development and regulated by microRNA-155 in pigs. Zhao, Shuanping,Zhang, Jing,Hou, Xinhua,Tang, Zhonglin,Li, Kui,Zhao, Shuanping,Zhang, Jing,Hou, Xinhua,Tang, Zhonglin,Li, Kui,Zan, Linsen,Wang, Ning.

[4]Identifying suitable reference genes for gene expression analysis in developing skeletal muscle in pigs. Niu, Guanglin,Yang, Yalan,Zhang, YuanYuan,Hua, Chaoju,Wang, Zishuai,Tang, Zhonglin,Li, Kui,Niu, Guanglin,Yang, Yalan,Tang, Zhonglin,Li, Kui. 2016

[5]Expression of the insulin-like growth factor system in skeletal muscle during embryonic and postnatal development in the first filial generation pigs from Erhualian and Yorkshire reciprocal crosses. Wang, Lijuan,Lin, Fei,Jiang, Baochun,Dong, Fulu,Liu, Honglin,Zhang, Guangmin. 2011

[6]Molecular characterization and expression analysis of the porcine caveolin-3 gene. Zhu, Zhengmao,Li, Yong,Mo, Delin,Li, Kui,Zhao, Shuhong.

[7]Genome-wide profiling of Sus scrofa circular RNAs across nine organs and three developmental stages. Liang, Guoming,Yang, Yalan,Niu, Guanglin,Tang, Zhonglin,Li, Kui,Liang, Guoming,Yang, Yalan,Tang, Zhonglin,Li, Kui,Liang, Guoming,Yang, Yalan,Tang, Zhonglin.

[8]Long non-coding RNA analysis of muscular responses to testosterone deficiency in Huainan male pigs. Xing, Baosong,Bai, Xianxiao,Guo, Hongxia,Chen, Junfeng,Hua, Liushuai,Zhang, Jiaqing,Ma, Qiang,Ren, Qiaoling,Wang, Jing,Wang, Huashuai.

[9]The expression patterns of DNA methylation reprogramming related genes are associated with the developmental competence of cloned embryos after zygotic genome activation in pigs. Huan, Yanjun,Wang, Hongmei,He, Hongbin,Huan, Yanjun,Liu, Zhonghua,Wu, Zhanfeng,Zhang, Jiguang.

[10]Effects of Carbon Concentrations and Carbon to Nitrogen ratios on Sporulation of Two Biological Control Fungi as Determined by Different Culture Methods. Liu, Xingzhong,Gao, Li.

[11]CIDE gene expression in adipose tissue, liver, and skeletal muscle from obese and lean pigs. Qiu, Yue-qin,Yang, Xue-fen,Ma, Xian-yong,Xiong, Yun-xia,Tian, Zhi-mei,Fan, Qiu-li,Wang, Li,Jiang, Zong-yong. 2017

[12]Copy Number Variation in SOX6 Contributes to Chicken Muscle Development. Lin, Shudai,Lin, Xiran,Zhang, Zihao,Jiang, Mingya,Nie, Qinghua,Zhang, Xiquan,Rao, Yousheng. 2018

[13]Circular RNAs are abundant and dynamically expressed during embryonic muscle development in chickens. Ouyang, Hongjia,Chen, Xiaolan,Wang, Zhijun,Yu, Jiao,Jia, Xinzheng,Li, Zhenhui,Luo, Wei,Abdalla, Bahareldin Ali,Jebessa, Endashaw,Nie, Qinghua,Zhang, Xiquan,Ouyang, Hongjia,Chen, Xiaolan,Wang, Zhijun,Yu, Jiao,Jia, Xinzheng,Li, Zhenhui,Luo, Wei,Abdalla, Bahareldin Ali,Jebessa, Endashaw,Nie, Qinghua,Zhang, Xiquan,Ouyang, Hongjia,Chen, Xiaolan,Wang, Zhijun,Yu, Jiao,Jia, Xinzheng,Li, Zhenhui,Luo, Wei,Abdalla, Bahareldin Ali,Jebessa, Endashaw,Nie, Qinghua,Zhang, Xiquan. 2018

[14]Identification and comparison of microRNAs from skeletal muscle and adipose tissues from two porcine breeds. Li, Hong-Yi,Xi, Qian-Yun,Liu, Xiao-Long,Cheng, Xiao,Shu, Gang,Wang, Song-Bo,Wang, Li-Na,Gao, Ping,Zhu, Xiao-Tong,Jiang, Qing-Yan,Zhang, Yong-Liang,Xiong, Yuan-Yan,Yuan, Li. 2012

[15]Activation of mammalian target of rapamycin signaling in skeletal muscle of neonatal chicks: Effects of dietary leucine and age. Deng, Huiling,Zheng, Aijuan,Liu, Guohua,Chang, Wenhuan,Zhang, Shu,Cai, Huiyi. 2014

[16]Loss-of-function myostatin mutation increases insulin sensitivity and browning of white fat in Meishan pigs. Cai, Chunbo,Qian, Lili,Jiang, Shengwang,Wang, Qingqing,Ma, Dezun,Xiao, Gaojun,Li, Biao,Xie, Shanshan,Gao, Ting,Cui, Wentao,Li, Kui,Cai, Chunbo,Qian, Lili,An, Xiaorong,Gao, Ting,Chen, Yaoxing,Sun, Youde,Liu, Jie. 2017

[17]Proteomic Analysis of Chicken Skeletal Muscle during Embryonic Development. Ouyang, Hongjia,Wang, Zhijun,Chen, Xiaolan,Yu, Jiao,Li, Zhenhui,Nie, Qinghua,Ouyang, Hongjia,Wang, Zhijun,Chen, Xiaolan,Yu, Jiao,Li, Zhenhui,Nie, Qinghua,Ouyang, Hongjia,Wang, Zhijun,Chen, Xiaolan,Yu, Jiao,Li, Zhenhui,Nie, Qinghua. 2017

[18]The Effect of Muscle-Regulatory Factor Genes and Satellite Cell Response to Recombinant Hsp70 Protein on Megalobrama amblycephala Skeletal Muscle. Zhu, Kecheng,Zhang, Dianchang,Wang, Huanling,Zhu, Kecheng,Zhang, Dianchang,Wang, Huanling. 2016

[19]Comparison of muscle characteristics and underpinning mechanisms between Texel and Ujumqin sheep aged from day 70 to 135 of gestation. Li, Li,Wang, Linjie,Zhong, Tao,Zhang, Hongping,Su, Hongwei,Liu, Wenzhong,Wei, Caihong,Xu, Lingyang,Zhao, Fuping,Zhang, Li,Du, Lixin,Ren, Hangxing.

[20]Porcine skeletal muscle differentially expressed gene CMYA1: isolation, characterization, mapping, expression and association analysis with carcass traits. Xu, X. L.,Xu, X. W.,Pan, P. W.,Yu, M.,Liu, B.,Xu, X. L.,Xu, X. W.,Pan, P. W.,Yu, M.,Liu, B.,Li, K.,Jiang, Z. H.,Rothschild, M. F.,Rothschild, M. F..

作者其他论文 更多>>