Global analysis of the Gossypium hirsutum L. Transcriptome during leaf senescence by RNA-Seq

文献类型: 外文期刊

第一作者: Min Lin

作者: Min Lin;Chaoyou Pang;Shuli Fan;Meizhen Song;Hengling Wei;Shuxun Yu

作者机构:

关键词: Cotton;Transcriptome;Leaf senescence;Transcription factors;Hormone

期刊名称:BMC PLANT BIOLOGY ( 影响因子:4.215; 五年影响因子:4.96 )

ISSN: 1471-2229

年卷期: 2015 年 15 卷

页码:

收录情况: SCI

摘要: Background: Leaf senescence is an important developmental programmed degeneration process that dramatically affects crop quality and yield. The regulation of senescence is highly complex. Although senescence regulatory genes have been well characterized in model species such as Arabidopsis and rice, there is little information on the control of this process in cotton. Here, the senescence process in cotton (Gossypium hirsutum L.) leaves was investigated over a time course including young leaf, mature leaf and leaf samples from different senescence stages using RNA-Seq. Results: Of 24,846 genes detected by mapping the tags to Gossypium genomes, 3,624 genes were identified as differentially expressed during leaf senescence. There was some overlap between the genes identified here and senescence-associated genes previously identified in other species. Most of the genes related to photosynthesis, chlorophyll metabolism and carbon fixation were downregulated; whereas those for plant hormone signal transduction were upregulated. Quantitative real-time PCR was used to evaluate the results of RNA-Seq for gene expression profiles. Furthermore, 519 differentially expressed transcription factors were identified, notably WRKY, bHLH and C3H. In addition, 960 genes involved in the metabolism and regulation of eight hormones were identified, of which many genes involved in the abscisic acid, brassinosteroid, jasmonic acid, salicylic acid and ethylene pathways were upregulated, indicating that these hormone-related genes might play crucial roles in cotton leaf development and senescence. However, most auxin, cytokinin and gibberellin pathway-related genes were downregulated, suggesting that these three hormones may act as negative regulators of senescence. Conclusions: This is the first high-resolution, multiple time-course, genome-wide comprehensive analysis of gene expression in cotton. These data are the most comprehensive dataset currently available for cotton leaf senescence, and will serve as a useful resource for unraveling the functions of many specific genes involved in cotton leaf development and senescence.

分类号:

  • 相关文献

[1]P-SAG12-IPT overexpression in eggplant delays leaf senescence and induces abiotic stress tolerance. Xiao, X. O.,Zeng, Y. M.,Cao, B. H.,Lei, J. J.,Chen, Q. H.,Meng, C. M.,Cheng, Y. J.,Xiao, X. O..

[2]Comparing Gene Expression Profiles Between Bt and non-Bt Rice in Response to Brown Planthopper Infestation. Wang, Fang,Ning, Duo,Dang, Cong,Han, Nai-Shun,Liu, Yu'e,Ye, Gong-Yin,Chen, Yang. 2015

[3]Effects of Soil Salinity and Plant Density on Yield and Leaf Senescence of Field-Grown Cotton. Zhang, H. J.,Dong, H. Z.,Li, W. J.,Zhang, D. M.,Zhang, H. J.. 2012

[4]Removal of early fruiting branches impacts leaf senescence and yield by altering the sink/source ratio of field-grown cotton. Chen, Yizhen,Dong, Hezhong,Chen, Yizhen,Kong, Xiangqiang,Dong, Hezhong,Kong, Xiangqiang,Dong, Hezhong. 2018

[5]Yield, quality and leaf senescence of cotton grown at varying planting dates and plant densities in the Yellow River Valley of China. Dong, HZ,Li, WJ,Tang, W,Li, ZH,Zhang, DM,Niu, YH. 2006

[6]Effects of cotton rootstock on endogenous cytokinins and abscisic acid in xylem sap and leaves in relation to leaf senescence. Dong, Hezhong,Li, Weijiang,Zhang, Dongmei,Dong, Hezhong,Niu, Yuehua. 2008

[7]Exogenous nitric oxide delays salt-induced leaf senescence in cotton (Gossypium hirsutum L.). Kong, Xiangqiang,Wang, Tao,Li, Weijiang,Tang, Wei,Zhang, Dongmei,Dong, Hezhong,Wang, Tao,Dong, Hezhong.

[8]Isolation and expression profiling of GhNAC transcription factor genes in cotton (Gossypium hirsutum L.) during leaf senescence and in response to stresses. Syed Tariq Shah,Chaoyou Pang,Shuli Fan,Meizhen Song,Saima Arain,Shuxun Yu.

[9]Highly efficient plant regeneration through somatic embryogenesis in 20 elite commercial cotton (Gossypium hirsutum L.) cultivars. Baohong Zhang,Qinglian Wang,Fang Liu,Kunbo Wang,Taylor P. Frazier. 2009

[10]Effects of early-fruit removal on endogenous cytokinins and abscisic acid in relation to leaf senescence in cotton. Dong, Hezhong,Niu, Yuehua,Kong, Xiangqiang,Luo, Zhen.

[11]Yield and economic benefits of late planted short-season cotton versus full-season cotton relayed with garlic. Lu, Hequan,Dai, Jianlong,Li, Weijiang,Tang, Wei,Zhang, Dongmei,Eneji, A. Egrinya,Dong, Hezhong.

[12]Isolation and Characterization of an ERF Transcription Factor Gene from Cotton (Gossypium barbadense L.). Xianpeng Meng,Fuguang Li,Chuanliang Liu,Chaojun Zhang,Zhixia Wu,Yajuan Chen.

[13]Transcriptome Analysis of Calcium and Hormone-Related Gene Expressions during Different Stages of Peanut Pod Development. Li, Yan,Meng, Jingjing,Yang, Sha,Guo, Feng,Zhang, Jialei,Geng, Yun,Cui, Li,Li, Xinguo,Wan, Shubo. 2017

[14]Transcriptome analyses of seed development in grape hybrids reveals a possible mechanism influencing seed size. Wang, Li,Hu, Xiaoyan,Jiao, Chen,Li, Zhi,Yan, Xiaoxiao,Wang, Yuejin,Wang, Xiping,Wang, Li,Hu, Xiaoyan,Li, Zhi,Yan, Xiaoxiao,Wang, Yuejin,Wang, Xiping,Jiao, Chen,Fei, Zhangjun,Liu, Chonghuai. 2016

[15]Transcriptome Analysis of Stem and Globally Comparison with Other Tissues in Brassica napus. Miao, Liyun,Zhang, Libin,Raboanatahiry, Nadia,Fu, Chunhua,Li, Maoteng,Miao, Liyun,Xiang, Jun,Gan, Jianping,Li, Maoteng,Lu, Guangyuan,Zhang, Xuekun. 2016

[16]Different Gene Expression Patterns between Leaves and Flowers in Lonicera japonica Revealed by Transcriptome Analysis. Zhang, Libin,Fu, Chunhua,Wu, Gang,Jia, Haibo,Yu, Longjiang,Li, Maoteng,Zhang, Libin,Xiang, Jun,Gan, Jianping,Li, Maoteng,Long, Yan. 2016

[17]Characterization of the global transcriptome for cotton (Gossypium hirsutum L.) anther and development of SSR marker. Xianwen Zhang ,Zhenwei Ye,TiankangWang,Hairong Xiong,Xiaoling Yuan,Zhigang Zhang,Youlu Yuan,Zhi Liu.

[18]Transcriptome Analysis Suggests That Chromosome Introgression Fragments from Sea Island Cotton (Gossypium barbadense) Increase Fiber Strength in Upland Cotton (Gossypium hirsutum). Quanwei Lu,Yuzhen Shi,Huang, Jinling,Yuan, Youlu,Xianghui Xiao,Pengtao Li,Juwu Gong,Wankui Gong,Aiying Liu,Haihong Shang,Junwen Li,Qun Ge,Weiwu Song,Shaoqi Li,Zhen Zhang,Md Harun or Rashid,Renhai Peng,Youlu Yuan,Jinling Huang. 2017

[19]Histological and Ultrastructural Observation Reveals Significant Cellular Differences between Agrobacterium Transformed Embryogenic and Non-embryogenic Calli of Cotton. Shang, Hai-Hong,Liu, Chuan-Liang,Zhang, Chao-Jun,Li, Feng-Lian,Hong, Wei-Dong,Li, Fu-Guang.

[20]A collection of 10,096 indica rice full-length cDNAs reveals highly expressed sequence divergence between Oryza sativa indica and japonica subspecies. Liu, Xiaohui,Lu, Tingting,Yu, Shuliang,Li, Ying,Huang, Yuchen,Huang, Tao,Zhang, Lei,Zhu, Jingjie,Zhao, Qiang,Fan, Danlin,Mu, Jie,Shangguan, Yingying,Feng, Qi,Guan, Jianping,Ying, Kai,Zhang, Yu,Lin, Zhixin,Sun, Zongxiu,Qian, Qian,Lu, Yuping,Han, Bin.

作者其他论文 更多>>