Review grain yield and nitrogen use efficiency in rice production regions in China

文献类型: 外文期刊

第一作者: Che Sheng-guo

作者: Che Sheng-guo;Zhao Bing-qiang;Li Yan-ting;Yuan Liang;Li Wei;Lin Zhi-an;Hu Shu-Wen;Shen Bing

作者机构:

关键词: rice;grain yield;nitrogen uptake;nitrogen use efficiency;China

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2015 年 14 卷 12 期

页码:

收录情况: SCI

摘要: As one of the staple food crops, rice (Otyza sativa L.) is widely cultivated across China, which plays a critical role in guaranteeing national food security. Most previous studies on grain yield or/and nitrogen use efficiency (NUE) of rice in China often involved site-specific field experiments, or small regions with insufficient data, which limited the representation for the current rice production regions. In this study, a database covering a wide range of climate conditions, soil types and field managements across China, was developed to estimate rice grain yield and NUE in various rice production regions in China and to evaluate the relationships between N rates and grain yield, NUE. According to the database for rice, the values of grain yield, plant N accumulation, N harvest index (HIN), indigenous N supply (INS), internal N efficiency (IEN), reciprocal internal N efficiency (RIEN), agronomic N use efficiency (AE(N)), partial N factor productivity (PEPN), physiological N efficiency (PEN), and recover efficiency of applied N (REN) averaged 7.69 t ha(-1), 152 kg ha(-1), 0.64 kg kg(-1), 94.1 kg kg(-1), 53.9 kg kg(-1), 1.98 kg kg(-1), 12.6 kg kg(-1), 48.6 kg kg(-1), 33.8 kg kg(-1), and 39.3%, respectively. However, the corresponding values all varied tremendously with large variation. Rice planting regions and N rates had significant influence on grain yield, N uptake and NUE values. Considering all observations, N rates of 200 to 250 kg ha(-1) commonly achieved higher rice grain yield compared to less than 200 kg N ha(-1) and more than 250 kg N ha(-1) at most rice planting regions. At N rates of 200 to 250 kg ha(-1), significant positive linear relationships were observed between rice grain yield and AEN, PEN, REN, IEN, and PFPN, and 46.49, 24.64, 7.94, 17.84, and 88.24% of the variation in AE(N), PEN, REN, IEN, and PFPN could be explained by grain yield, respectively. In conclusion, in a reasonable range of N application, an increase in grain yield can be achieved accompanying by an acceptable NUE.

分类号:

  • 相关文献

[1]Improving nitrogen fertilization in rice by site-specific N management. A review. Peng, Shaobing,Buresh, Roland J.,Dobermann, Achim,Huang, Jianliang,Cui, Kehui,Zhong, Xuhua,Zou, Yingbin,Tang, Qiyuan,Yang, Jianchang,Wang, Guanghuo,Liu, Yuanying,Hu, Ruifa,Zhang, Fusuo. 2010

[2]Identification of QTL Associated with Nitrogen Uptake and Nitrogen Use Efficiency Using High Throughput Genotyped CSSLs in Rice (Oryza sativa L.). Zhou, Yong,Tao, Yajun,Tang, Dongnan,Zhong, Jun,Wang, Yi,Yuan, Qiumei,Yu, Xiaofeng,Zhang, Yan,Wang, Yulong,Liang, Guohua,Dong, Guichun,Wang, Jun. 2017

[3]Identification and characterization of quantitative trait loci for grain yield and its components under different nitrogen fertilization levels in rice (Oryza sativa L.). Tong, Han-hua,Xing, Yong-zhong,Luo, Li-jun,Tong, Han-hua,Chen, Liang,Li, Wei-ping,Mei, Han-wei,Yu, Xing-qiao,Xu, Xiao-yan,Luo, Li-jun,Tong, Han-hua,Zhang, Shan-qing. 2011

[4]Influence of the system of rice intensification on rice yield and nitrogen and water use efficiency with different N application rates. Zhao, Limei,Wu, Lianghuan,Lu, Xinghua,Zhao, Limei,Li, Yongshan,Zhu, Defeng,Uphoff, Norman.

[5]Mapping QTLs for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). An, Diaoguo,Su, Junying,Liu, Quanyou,Zhu, Yongguan,Tong, Yiping,Li, Junming,Jing, Ruilian,Li, Bin,Li, Zhensheng. 2006

[6]Maintaining yields and reducing nitrogen loss in rice-wheat rotation system in Taihu Lake region with proper fertilizer management. Xue, Lihong,Yu, Yingliang,Yang, Linzhang. 2014

[7]Agronomic performance of high-yielding rice variety grown under alternate wetting and drying irrigation. Yao, Fengxian,Huang, Jianliang,Cui, Kehui,Nie, Lixiao,Liu, Xiaojin,Wu, Wei,Peng, Shaobing,Xiang, Jing,Chen, Mingxia. 2012

[8]Nitrogen use by winter wheat and changes in soil nitrate nitrogen levels with supplemental irrigation based on measurement of moisture content in various soil layers. Guo, Zengjiang,Zhang, Yongli,Shi, Yu,Yu, Zhenwen,Zhao, Junye.

[9]Regional distribution of nitrogen fertilizer use and N-saving potential for improvement of food production and nitrogen use efficiency in China. Wang, Xiaobin,Cai, Dianxiong,Cai, Dianxiong,Hoogmoed, Willem B.,Oenema, Oene. 2011

[10]Effect of nitrogen form and root-zone pH on growth and nitrogen uptake of tea (Camellia sinensis) plants. Ruan, Jianyun,Gerendas, Joska,Hardter, Rolf,Sattelmacher, Burkhard.

[11]Effects of the fungal endophyte Phomopsis liquidambari on nitrogen uptake and metabolism in rice. Yang, Bo,Wang, Xiao-Mi,Ma, Hai-Yan,Jia, Yong,Dai, Chuan-Chao,Li, Xia.

[12]QTL Mapping by Whole Genome Re-sequencing and Analysis of Candidate Genes for Nitrogen Use Efficiency in Rice. Xia, Xiuzhong,Zhang, Zongqiong,Nong, Baoxuan,Zeng, Yu,Deng, Guofu,Li, Danting,Xiong, Faqian,Wu, Yanyan,Gao, Ju. 2017

[13]Factors controlling regional grain yield in China over the last 20 years. Wang, Xiaobin,Cai, Dianxiong,Grant, Cynthia,Hoogmoed, Willem B.,Oenema, Oene.

[14]Yield and yield component analysis of early-season rice in southern China. Mo, Hailing,Qin, Gang,Luo, Zhiyong,Zhang, Zongqiong,Chen, Caihong. 2013

[15]Dissection of combining ability for yield and related traits using introgression lines in the background of a key restorer line in rice (Oryza sativa L.). Xiang, Chao,Zhang, Hongjun,Wang, Jie,Wang, Wensheng,Gao, Yongming,Wang, Hui,Xia, Jiafa,Ye, Guoyou.

[16]Overexpression of a glyoxalase gene, OsGly I, improves abiotic stress tolerance and grain yield in rice (Oryza sativa L.). Xiong, Fangjie,Yu, Xiaohong,Gong, Xiaoping,Liu, Yongsheng,Luo, Juntao,Jiang, Yudong,Kuang, Haochi,Gao, Bijun,Niu, Xiangli,Liu, Yongsheng,Liu, Yongsheng.

[17]Mapping QTLs for improving grain yield using the USDA rice mini-core collection. Li, Xiaobai,Jia, Limeng,Wu, Dianxing,Li, Xiaobai,Agrama, Hesham,Jia, Limeng,Moldenhauer, Karen,Li, Xiaobai,Yan, Wengui,Jia, Limeng,Jackson, Aaron,McClung, Anna,Shen, Xihong,Yeater, Kathleen.

[18]Recombination between DEP1 and NRT1.1B under japonica and indica genetic backgrounds to improve grain yield in rice. Zhao, Mingzhu,Zheng, Wenjing,Zhao, Mingzhu,Geng, Xin,Bi, Wenjing,Xu, Quan,Sun, Jian,Huang, Yuwei,Wang, Qingying,Xu, Zhengjin.

[19]Nitrogen accumulation, remobilization and partitioning in rice (Oryza sativa L.) under an improved irrigation practice. Lin, XQ,Zhou, WJ,Zhu, DF,Chen, HZ,Zhang, YP. 2006

[20]Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Gao, He,Jin, Mingna,Zheng, Xiao-Ming,Chen, Jun,Zhang, Zhe,Sheng, Peike,Ma, Jin,Ma, Weiwei,Wang, Haiyang,Wu, Chuanyin,Wan, Jianmin,Gao, He,Zhou, Kunneng,Jiang, Ling,Liu, Shijia,Wan, Jianmin,Yuan, Dingyang,Xin, Yeyun,Deng, Huafeng,Yuan, Longping,Wang, Maoqing,Huang, Dongyi.

作者其他论文 更多>>