Investigation on the co-infections of Toxoplasma gondii with PRRSV, CSFV or PCV-2 in swine in part of China

文献类型: 外文期刊

第一作者: Wang Shuai

作者: Wang Shuai;Zhang Meng;Liu Xin-chao;Lin Tao;Zhao Guang-wei;Ia Hassan;Yan Ruo-feng;Song Xiao-kai;Li Xiang-rui;Yang Han-chun;Lin Tao;Yuan Shi-shan

作者机构:

关键词: Toxoplasma gondii;coinfection;PRRSV;CSFV;PCV-2;pig

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2015 年 14 卷 9 期

页码:

收录情况: SCI

摘要: The objective of the present investigation was to estimate the prevalence of Toxoplasma gondii infection and co-infection with porcine reproductive and respiratory syndrome virus (PRRSV), classical swine fever virus (CSFV) and porcine circovirus type 2 (PCV-2) in pigs in China. A total of 372 tissues or serum samples collected from pigs distributed in 9 provinces/municipalities of China during the period from February 2011 to November 2012 were assayed for T. gondii antigens and antibodies using enzyme linked immunosorbent assay (ELISA) technique, while the PCR was designed for the detection of the PRRSV, CSFV and PCV-2, respectively. The total positive rate of T. gondii, PRSSV, CSFV and PCV-2 was 9.14% (34/372), 50.00% (186/372), 37.10% (138/372) and 3.23% (12/372), respectively. Among the 34 T. gondii positive samples, 26 samples were simultaneously infected with T. gondii and viruses, while the remaining eight samples were infected with T. gondii alone. In addition, the co-infection rate of T. gondii with PRSSV, T. gondii with PRSSV and CSFV, T. gondii with PRSSV and PCV-2, T. gondii with CSFV and PCV-2, T. gondii with PRSSV, CSFV and PCV-2 was 1.61% (6/372), 4.03% (15/372), 0.27% (1/372), 0.27% (1/372) and 0.81% (3/372), respectively. The results of the present survey revealed that PRRSV and CSFV were the common pathogens co-existing with porcine toxoplasmosis in China, and both of them could increase the chances of T. gondii infection in pig. This is the first report of T. gondii co-infections with viruses in pigs. It is very important to understand the interactions of parasite and virus, and can be used as reference data for the control and prevention of co-infections of T. gondii and viruses in pigs.

分类号:

  • 相关文献

[1]A multiplex RT-PCR for rapid and simultaneous detection of porcine teschovirus, classical swine fever virus, and porcine reproductive and respiratory syndrome virus in clinical specimens. Liu, Shanshan,Hu, Quanbo,Zhang, Chaofan,Hu, Feng,Lin, Wencheng,Cui, Shangjin,Zhao, Yarong,Lv, Chaochao,Zhao, Rui. 2011

[2]Chinese border disease virus strain JSLS12-01 infects piglets and down-regulates the antibody responses of classical swine fever virus C strain vaccination. Mao, Li,Li, Wenliang,Liu, Xia,Hao, Fei,Yang, Leilei,Deng, Jiawu,Zhang, Wenwen,Jiang, Jieyuan,Mao, Li,Li, Wenliang,Liu, Xia,Hao, Fei,Yang, Leilei,Deng, Jiawu,Zhang, Wenwen,Jiang, Jieyuan,Mao, Li,Li, Wenliang,Liu, Xia,Hao, Fei,Yang, Leilei,Deng, Jiawu,Zhang, Wenwen,Jiang, Jieyuan,Liu, Xia,Deng, Jiawu,Wei, Jianzhong.

[3]Localization, Expression Change in PRRSV Infection and Association Analysis of the Porcine TAP1 Gene. Sun, Nunu,Liu, Dewu,Meng, Fanming,Zhang, Xianwei,Wu, Zhenfang,Sun, Nunu,Liu, Xiangdong,Xie, Shengsong,Li, Xinyun,Sun, Nunu,Liu, Xiangdong,Xie, Shengsong,Li, Xinyun,Chen, Hongbo,Chen, Huiyong. 2012

[4]Seroprevalence and genotypes of Toxoplasma gondii isolated from pigs intended for human consumption in Liaoning province, northeastern China. Wang, Dawei,Zhang, Guoxin,Yuan, Gaoming,He, Jianbin,Yang, Na,Liu, Yan,Jiang, Tiantian,Su, Chunlei. 2016

[5]Genetic characterization of Toxoplasma gondii from pigs from different localities in China by PCR-RFLP. Jiang, Hai-Hai,Huang, Si-Yang,Zhou, Dong-Hui,Zhang, Xiao-Xuan,Su, Chunlei,Zhu, Xing-Quan,Deng, Shun-Zhou,Su, Chunlei,Zhang, Xiao-Xuan. 2013

[6]Detection of Acute Toxoplasmosis in Pigs Using Loop-Mediated Isothermal Amplification and Quantitative PCR. Wang, Yanhua,Wang, Guangxiang,Wang, Meng,Zhang, Delin,Yin, Hong.

[7]Cellular proteomic analysis of porcine circovirus type 2 and classical swine fever virus coinfection in porcine kidney-15 cells using isobaric tags for relative and absolute quantitation-coupled LC-MS/MS. Zhou, Niu,Fan, Chunmei,Liu, Song,Zhou, Jianwei,Jin, Yulan,Zheng, Xiaojuan,Gu, Jinyan,Zhou, Jiyong,Gu, Jinyan,Gu, Jinyan,Zhou, Jiyong,Zhou, Jiyong,Wang, Qin,Liu, Jue,Yang, Hanchun.

[8]Atypical Classical Swine Fever Infection Changes Interleukin Gene Expression in Pigs. Sun, Y. K.,Sun, Y. K.,Zhang, X. M.,Du, M.,Li, Y. X.,Pan, H. B.,Yan, Y. L.,Yang, Y. A..

[9]The swine CD81 enhances E2-based DNA vaccination against classical swine fever. Li, Wenliang,Zhou, Bin,Liu, Xia,Yang, Leilei,Zhang, Wenwen,Jiang, Jieyuan,Zhou, Bin.

[10]Antigenic differentiation of classical swine fever viruses in China by monoclonal antibodies. Zhu, Yan,Shi, Zixue,Guo, Huanchen,Tu, Changchun,Drew, Trevor W.,Wang, Qin,Qiu, Huaji. 2009

[11]Differential Diagnosis of Antibody to Classical Swine Fever Virus Field Strain by ELISA with Recombinant E2 Proteins of Various Group CSFV. Qiu Chang-Qing,Hu Hui,Cao Xiao-An,Zhou Ji-Zhang,Lin Guo-Zhen,Hu Hui. 2008

[12]Porcine Viperin protein inhibits the replication of classical swine fever virus (CSFV) in vitro. Li, Wenliang,Mao, Li,Yang, Leilei,Hao, Fei,Zhang, Wenwen,Jiang, Jieyuan,Cao, Yongguo,Zhou, Bin,Han, Linxiao,Lin, Tao. 2017

[13]Development and partial validation of a recombinant E2-based indirect ELISA for detection of specific IgM antibody responses against classical swine fever virus. Li, Wenliang,Mao, Li,Yang, Leilei,Jiang, Jieyuan,Zhou, Bin. 2013

[14]Viroporin activity and membrane topology of classic swine fever virus p7 protein. Guo, Hui-Chen,Sun, Shi-Qi,Sun, De-Hui,Wei, Yan-Quan,Xu, Jin,Liu, Xiang-Tao,Liu, Zai-Xin,Luo, Jian-Xiong,Yin, Hong,Liu, Ding Xiang,Guo, Hui-Chen,Sun, Shi-Qi,Sun, De-Hui,Wei, Yan-Quan,Xu, Jin,Liu, Xiang-Tao,Liu, Zai-Xin,Luo, Jian-Xiong,Yin, Hong,Liu, Ding Xiang,Huang, Mei,Liu, Ding Xiang.

[15]Quantitative estimation of the replication kinetics of genotype 2 PRRSV strains with different levels of virulence in vitro. Dong, Jianguo,Wang, Gang,Liu, Yonggang,Shi, Wenda,Wu, Jianan,Wen, Huiqiang,Wang, Shujie,Tian, Zhijun,Cai, Xuehui,Dong, Jianguo.

[16]Production of antisera against porcine haptoglobin: Potential for distinguishing haptoglobin subunits. Yang, Yongqian,An, Tongqing,Liu, Fei,Yuan, Zhonghua,Peng, Jinmei,Wu, Yuquan,Meng, Zhenxiang,Tian, Zhijun,Yang, Yongqian,Wu, Jiang,Zhang, Deli.

[17]Porcine GPX1 enhances GP5-based DNA vaccination against porcine reproductive and respiratory syndrome virus. Du, Luping,Pang, Fengjiao,Xu, Xiangwei,Huang, Kehe,Du, Luping,Li, Bin,Pang, Fengjiao,Yu, Zhengyu,Xu, Xiangwei,Fan, Baochao,Tan, Yeping,He, Kongwang,Du, Luping,Li, Bin,Yu, Zhengyu,Fan, Baochao,Tan, Yeping,He, Kongwang.

[18]Preparation and heat resistance study of porcine reproductive and respiratory syndrome virus sugar glass vaccine. Lv Fang,Lu Yu,Hao Zheng-lin,Zhao Yan-hong,Feng Lei,Chen Jin,Wang Li-li,Hou Ji-bo,Hao Zheng-lin,Rui Rong,Zhang li-hang,Lv Fang,Lu Yu,Zhao Yan-hong,Feng Lei,Chen Jin,Wang Li-li,Hou Ji-bo.

[19]GP5 protein-based ELISA for the detection of PRRSV antibodies. Wang, Y.,Wang, Y.,Guo, J.,Qiao, S.,Li, Q.,Yang, J.,Jin, Q.,Zhang, G..

[20]Transcription analysis on response of porcine alveolar macrophages to co-infection of the highly pathogenic porcine reproductive and respiratory syndrome virus and Mycoplasma hyopneumoniae. Li, Bin,Du, Luping,Xu, Xiangwei,Sun, Bing,Yu, Zhengyu,Feng, Zhixin,Liu, Maojun,Wei, Yanna,Wang, Haiyan,Shao, Guoqing,He, Kongwang,Li, Bin,Yu, Zhengyu,Feng, Zhixin,Liu, Maojun,Wei, Yanna,Wang, Haiyan,Shao, Guoqing,He, Kongwang.

作者其他论文 更多>>