Enhancement of Lipase-catalyzed Synthesis of Caffeic Acid Phenethyl Ester in Ionic Liquid with DMSO Co-solvent

文献类型: 外文期刊

第一作者: Gu, Shuangshuang

作者: Gu, Shuangshuang;Wang, Jun;Wei, Xianbin;Cui, Hongsheng;Wu, Xiangyang;Wu, Fuan;Wang, Jun;Wang, Jun;Wu, Fuan

作者机构:

关键词: Biocatalysis;Caffeic acid phenethyl ester;Co-solvent;Kinetics;Ionic liquid

期刊名称:CHINESE JOURNAL OF CHEMICAL ENGINEERING ( 影响因子:3.171; 五年影响因子:2.853 )

ISSN: 1004-9541

年卷期: 2014 年 22 卷 11-12 期

页码:

收录情况: SCI

摘要: Caffeic acid phenethyl ester (CAPE) is a natural and rare ingredient with several biological activities, but its industrial production using lipase-catalyzed esterification of caffeic acid (CA) and 2-phenylethanol (PE) in ionic liquids (ILs) is hindered by low substrate concentrations and long reaction time. To set up a high-efficiency bioprocess for production of CAPE, a novel dimethyl sulfoxide (DMSO)-IL co-solvent system was established in this study. The 2% (by volume) DMSO-[Bmim][Tf2N] system was found to be the best medium with higher substrate solubility and conversion of CA. Under the optimum conditions, the substrate concentration of CA was raised 8-fold, the reaction time was reduced by half, and the conversion reached 96.23%. The kinetics follows a ping-pong bi-bi mechanism with inhibition by PE, with kinetic parameters as follows: V-max = 0.89 mmol . min(-1) . g(-1), K-m,K-CA = 42.9 mmol . L-1, K-m,K-PE = 165.7 mmol . L-1, and K-i,K-PE = 146.2 mmol . L-1. The results suggest that the DMSO co-solvent effect has great potential to enhance the enzymatic synthesis efficiency of CAPE in ILs. (C) 2014 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. All rights reserved.

分类号:

  • 相关文献

[1]Enhancement of the selective enzymatic biotransformation of rutin to isoquercitrin using an ionic liquid as a co-solvent. Wang, Jun,Sun, Guo-Xia,Wu, Fu-An,Guo, Xi-Jie,Yu, Liang,Wu, Fu-An,Guo, Xi-Jie,Yu, Liang.

[2]Cooperative Reinforcement of Ionic Liquid and Reactive Solvent on Enzymatic Synthesis of Caffeic Acid Phenethyl Ester as an In Vitro Inhibitor of Plant Pathogenic Bacteria. Xu, Yan,Sheng, Sheng,Liu, Xi,Wang, Chao,Xiao, Wei,Wang, Jun,Wu, Fu-An,Xu, Yan,Sheng, Sheng,Wang, Jun,Wu, Fu-An.

[3]Lipase-catalyzed Synthesis of Caffeic Acid Phenethyl Ester in Ionic Liquids: Effect of Specific Ions and Reaction Parameters. Wang Jun,Li Jing,Zhang Leixia,Gu Shuangshuang,Wu Fuan,Wu Fuan. 2013

[4]A novel continuous flow biosynthesis of caffeic acid phenethyl ester from alkyl caffeate and phenethanol in a packed bed microreactor. Wang, Jun,Gu, Shuang-Shuang,Cui, Hong-Sheng,Wang, Jun,Wu, Xiang-Yang,Wu, Fu-An.

[5]A novel chemoenzymatic synthesis of propyl caffeate using lipase-catalyzed transesterification in ionic liquid. Pang, Na,Gu, Shuang-Shuang,Wang, Jun,Cui, Hong-Sheng,Wang, Fang-Qin,Liu, Xi,Zhao, Xing-Yu,Wu, Fu-An,Wu, Fu-An.

[6]Ultrasound irradiation accelerates the lipase-catalyzed synthesis of methyl caffeate in an ionic liquid. Wang, Jun,Wang, Shasha,Li, Zhongjian,Gu, Shuangshuang,Wu, Fuan,Wang, Jun,Wang, Shasha,Li, Zhongjian,Gu, Shuangshuang,Wu, Fuan,Wang, Jun,Wu, Xiangyang.

[7]Potassium release rates from ustisols and their application. Lu, XN,Zhang, MH,Xu, JM.

[8]Generic DART-MS platform for monitoring the on-demand continuous-flow production of pharmaceuticals: Advancing the quantitative protocol for caffeates in microfluidic biocatalysis. Xu, Yan,Zhang, Dong-Yang,Liu, Xi,Sheng, Sheng,Wu, Guo-Hua,Wang, Jun,Wu, Fu-An,Xu, Yan,Zhang, Dong-Yang,Sheng, Sheng,Wu, Guo-Hua,Wang, Jun,Wu, Fu-An,Meng, Xiang-Yun.

[9]Enantio-selective preparation of (S)-1-phenylethanol by a novel marine GDSL lipase MT6 with reverse stereo-selectivity. Deng, Dun,Zhang, Yun,Sun, Aijun,Hu, Yunfeng,Deng, Dun,Zhang, Yun,Sun, Aijun,Hu, Yunfeng,Deng, Dun,Hu, Yunfeng. 2016

[10]Production of Adipic Acid from Sugar Beet Residue by Combined Biological and Chemical Catalysis. Zhang, Hongfang,Su, Xiaoyun,Ang, Ee Lui,Zhao, Huimin,Li, Xiukai,Zhang, Yugen,Su, Xiaoyun,Zhao, Huimin,Zhao, Huimin,Zhao, Huimin. 2016

[11]Chemical structures, biosynthesis, bioactivities, biocatalysis and semisynthesis of tobacco cembranoids: An overview. Yan, Ning,Du, Yongmei,Liu, Xinmin,Zhang, Hongbo,Liu, Yanhua,Zhang, Peng,Gong, Daping,Zhang, Zhongfeng.

[12]Lipase Immobilization on Hyper-Cross-Linked Polymer-Coated Silica for Biocatalytic Synthesis of Phytosterol Esters with Controllable Fatty Acid Composition. Zheng, Ming-Ming,Huang, Feng-Hong,Wang, Lian,Guo, Ping-Mei,Deng, Qian-Chun,Zheng, Ming-Ming,Huang, Feng-Hong,Wang, Lian,Guo, Ping-Mei,Deng, Qian-Chun,Lu, Yong,Feng, Yu-Qi.

[13]Selective hydrolysis by commercially available hesperidinase for isoquercitrin production. Wang, Jun,Ma, Yan-Long,Xia, Rui,Sun, Guo-Xia,Wu, Fu-An,Wang, Jun,Wu, Xiang-Yang,Yu, Liang,Wu, Fu-An,Yu, Liang.

[14]Structured lipids enriched with unsaturated fatty acids produced by enzymatic acidolysis of silkworm pupae oil using oleic acid. Zhao, Xing-Yu,Wang, Xu-Dong,Liu, Xi,Zhu, Wei-Jie,Mei, Yi-Yuan,Li, Wen-Wen,Wang, Jun,Wang, Jun.

[15]Immobilization of Candida rugosa lipase on hydrophobic/strong cation-exchange functional silica particles for biocatalytic synthesis of phytosterol esters. Zheng, Ming-Ming,Dong, Ling,Guo, Ping-Mei,Deng, Qian-Chun,Li, Wen-Lin,Huang, Feng-Hong,Lu, Yong,Feng, Yu-Qi.

[16]From microalgae oil to produce novel structured triacylglycerols enriched with unsaturated fatty acids. Wang, Jun,Wang, Xu-Dong,Zhao, Xing-Yu,Liu, Xi,Wu, Fu-An,Wang, Jun,Wu, Fu-An,Dong, Tao.

[17]Microfluidic biocatalysis enhances the esterification of caffeic acid and methanol under continuous-flow conditions. Wang, Sha-Sha,Li, Zhong-Jian,Sheng, Sheng,Wu, Fu-An,Wang, Jun,Sheng, Sheng,Wu, Fu-An,Wang, Jun.

[18]Electricity generation from starch processing wastewater using microbial fuel cell technology. Lu, Na,Zhang, Jin-tao,Ni, Jin-ren,Lu, Na,Zhou, Shun-gui,Zhang, Jin-tao.

[19]Surfactant-free Ionic Liquid Microemulsions of N, N-dimethylformamide, 1-butyl-3-methylimidazolium hexafluorophosphate, and toluene. Yongjun Zheng,Fei Meng,Mali Liu.

[20]Study on the Attractive Electroanalytical Performance of Carbon-Ionic Liquid Paste Electrode. Zhang, Xuzhi,Zhao, Jun,Chen, Bijuan,Qu, Keming,Li, Meng. 2013

作者其他论文 更多>>