iTRAQ-Based Comparative Proteomic Analysis of Seedling Leaves of Two Upland Cotton Genotypes Differing in Salt Tolerance

文献类型: 外文期刊

第一作者: Wenfang Gong;;Feifei Xu

作者: Wenfang Gong;Feifei Xu;Du, Xiongming;Junling Sun;Zhen Peng;Shoupu He;Zhaoe Pan;Xiongming Du

作者机构:

关键词: cotton;short-term salt stress;salt tolerance;proteome;iTRAQ

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2017 年 8 卷

页码:

收录情况: SCI

摘要: Cotton yields are greatly reduced under high salinity stress conditions, although cotton is considered a moderately salt-tolerant crop. Understanding at the molecular level how cotton responds to salt stress will help in developing salt tolerant varieties. Here, we combined physiological analysis with isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics of seedling leaves of 2 genotypes differing in salinity tolerance to 200mM (18.3 dS/m) NaCl stress. Salt stress produced significant stress symptoms in the sensitive genotype Nan Dan Ba Di Da Hua (N), including lower relative water and chlorophyll contents and higher relative electrolyte leakage and Na+/K+ ratio in leaf samples, compared with those in the tolerant genotype Earlistaple 7 (Z). A total of 58 differentially abundant salt-responsive proteins were identified. Asp-Glu-Ala-Asp (DEAD)-box ATP-dependent RNA helicase 3 and protochlorophyllide reductase were markedly suppressed after salt treatment, whereas the phosphate-related differentially abundant proteins (DAPs) phosphoethanolamine N-methyltransferase 1 and 14-3-3-like protein E were induced, and all these proteins may play significant roles in salt stress. Twenty-nine salt-responsive proteins were also genotype specific, and 62.1 and 27.6% of these were related to chloroplast and defense responses, respectively. Based on the Arabidopsis thaliana protein interaction database, orthologs of 25 proteins showed interactions in Arabidopsis, and among these, a calmodulin protein was predicted to have 212 functional partners. In addition, the Golgi apparatus and calcium may be important for salt secretion in cotton. Through integrative proteome and transcriptome analysis, 16 DAPs were matched to differentially expressed genes and verified using qRT-PCR. On the basis of these findings, we proposed that some proteins related to chloroplast, ATP, ribosomal, and phosphate metabolism as well as to the Golgi apparatus and calcium may play key roles in the short-term salt stress response of cotton seedling leaves.

分类号:

  • 相关文献

[1]Proteomic Analysis of Chicken Skeletal Muscle during Embryonic Development. Ouyang, Hongjia,Wang, Zhijun,Chen, Xiaolan,Yu, Jiao,Li, Zhenhui,Nie, Qinghua,Ouyang, Hongjia,Wang, Zhijun,Chen, Xiaolan,Yu, Jiao,Li, Zhenhui,Nie, Qinghua,Ouyang, Hongjia,Wang, Zhijun,Chen, Xiaolan,Yu, Jiao,Li, Zhenhui,Nie, Qinghua. 2017

[2]iTRAQ-Based Quantitative Proteomic Analysis of the Potentiated and Dormant Antler Stem Cells. Dong, Zhen,Ba, Hengxing,Zhang, Wei,Li, Chunyi,Dong, Zhen,Ba, Hengxing,Zhang, Wei,Li, Chunyi,Coates, Dawn. 2016

[3]iTRAQ-based quantitative proteomics analysis of rice leaves infected by Rice stripe virus reveals several proteins involved in symptom formation. Hajano, Jamal-U-Ddin,Wang, Xifeng,Ren, Yingdang,Lu, Chuantao. 2015

[4]Complementary transcriptomic and proteomic analyses of a chlorophyll-deficient tea plant cultivar reveal multiple metabolic pathway changes. Wang, Lu,Cao, Hongli,Yue, Chuan,Hao, Xinyuan,Yang, Yajun,Wang, Xinchao,Wang, Lu,Cao, Hongli,Yue, Chuan,Hao, Xinyuan,Yang, Yajun,Wang, Xinchao,Chen, Changsong.

[5]iTRAQ-based analysis of developmental dynamics in the soybean leaf proteome reveals pathways associated with leaf photosynthetic rate. Qin, Jun,Wang, Fengmin,Zhang, Mengchen,Xu, Jin,Zhang, Jianan,Liu, Duan,Yin, Changcheng,Chen, Hao,Chen, Pengyin,Qin, Jun,Ma, Jinbing,Zhang, Bo.

[6]iTRAQ-based quantitative proteomic analysis of midgut in silkworm infected with Bombyx mori cytoplasmic polyhedrosis virus. Gao, Kun,Deng, Xiang-Yuan,Shang, Meng-Ke,Qin, Guang-Xing,Hou, Cheng-Xiang,Guo, Xi-Jie.

[7]Comparative proteomic analyses provide novel insights into the effects of grafting wound and hetero-grafting per se on bottle gourd. Wang, Lingping,Li, Guojing,Wu, Xiaohua,Xu, Pei,Li, Guojing,Xu, Pei.

[8]Comparative Proteomics of Contrasting Maize, Genotypes Provides Insights into Salt-Stress Tolerance Mechanisms. Luo, Meijie,Zhao, Yanxin,Wang, Yuandong,Shi, Zi,Zhang, Panpan,Zhang, Yunxia,Song, Wei,Zhao, Jiuran. 2018

[9]Comparative Proteomic Analysis of Gossypium thurberi in Response to Verticillium dahliae Inoculation. Weiping Fang,Deyi Xie,Heqin Zhu,Wu Li,Zhenzhen Xu,Lirong Yang,Zhifang Li,Li Sun,Jinxia Wang,Lihong Nie,Zhongjie Tang,Shuping Lv,Fu’an Zhao,Yao Sun,Yuanming Zhao,Jianan Hou,Xiaojie Yang. 2015

[10]Comparative proteomic analysis reveals the mechanisms governing cotton fiber differentiation and initiation. Kang Liu,Meiling Han,Chaojun Zhang,Liangyu Yao,Jing Sun,Tianzhen Zhang.

[11]IMPROVED NUTRIENT UPTAKE ENHANCES COTTON GROWTH AND SALINITY TOLERANCE IN SALINE MEDIA. Dai, J. L.,Duan, L. S.,Dong, H. Z.,Dai, J. L.. 2014

[12]Cloning and Expression Analysis of Eight Upland Cotton Pentatricopeptide Repeat Family Genes. Han, Zongfu,Kong, Fanjin,Deng, Yongsheng,Wang, Zongwen,Shen, Guifang,Wang, Jinghui,Duan, Bing,Li, Ruzhong,Qin, Yuxiang.

[13]Genotypic variations in ion homeostasis, photochemical efficiency and antioxidant capacity adjustment to salinity in cotton (Gossypium hirsutum L.). Ning Wang,Haikun Qi,Guilan Su,Jie Yang,Hong Zhou,Qinghua Xu,Qun Huang,Gentu Yan.

[14]Co-overexpression of AVP1 and AtNHX1 in Cotton Further Improves Drought and Salt Tolerance in Transgenic Cotton Plants. Shen, Guoxin,Wei, Jia,Qiu, Xiaoyun,Hu, Rongbin,Kuppu, Sundaram,Zhang, Hong,Auld, Dick,Blumwald, Eduardo,Gaxiola, Roberto,Payton, Paxton.

[15]Dose-Dependent Effects of Coronatine on Cotton Seedling Growth Under Salt Stress. Xie, ZhiXia,Liu, Xiaojing,Duan, LiuSheng,Li, ZhaoHu,Wang, XiaoDong.

[16]Histological and Ultrastructural Observation Reveals Significant Cellular Differences between Agrobacterium Transformed Embryogenic and Non-embryogenic Calli of Cotton. Shang, Hai-Hong,Liu, Chuan-Liang,Zhang, Chao-Jun,Li, Feng-Lian,Hong, Wei-Dong,Li, Fu-Guang.

[17]iTRAQ-proteomics and bioinformatics analyses of mammary tissue from cows with clinical mastitis due to natural infection with Staphylococci aureus. Huang, Jinming,Luo, Guojing,Zhang, Zijing,Wang, Xiuge,Ju, Zhihua,Qi, Chao,Zhang, Yan,Wang, Changfa,Li, Rongling,Li, Jianbin,Yin, Weijun,Zhong, Jifeng,Luo, Guojing,Zhang, Zijing,Xu, Yinxue,Moisa, Sonia J.,Loor, Juan J.,Loor, Juan J.,Moisa, Sonia J.,Loor, Juan J.. 2014

[18]Proteomic Analysis of Differences in Fiber Development between Wild and Cultivated Gossypium hirsutum L.. Yuan Qin,Yu, Shuxun,Hengling Wei,Huiru Sun,Pengbo Hao,Hantao Wang,Junji Su,Shuxun Yu.

[19]iTRAQ Protein Profile Differential Analysis between Somatic Globular and Cotyledonary Embryos Reveals Stress, Hormone, and Respiration Involved in Increasing Plant let Regeneration of Gossypium hirsutum L.. Xiaoyang Ge,Chaojun Zhang,Qianhua Wang,Zuoren Yang,Ye Wang,Xueyan Zhang,Zhixia Wu,Yuxia Hou,Jiahe Wu,Fuguang Li.

[20]Unraveling the Root Proteome Changes and Its Relationship to Molecular Mechanism Underlying Salt Stress Response in Radish (Raphanus sativus L.). Sun, Xiaochuan,Wang, Yan,Xu, Liang,Li, Chao,Zhang, Wei,Luo, Xiaobo,Jiang, Haiyan,Liu, Liwang,Sun, Xiaochuan,Sun, Xiaochuan,Wang, Yan,Xu, Liang,Luo, Xiaobo,Liu, Liwang. 2017

作者其他论文 更多>>