PaCYP78A9, a Cytochrome P450, Regulates Fruit Size in Sweet Cherry (Prunus avium L.)

文献类型: 外文期刊

第一作者: Qi, Xiliang

作者: Qi, Xiliang;Liu, Congli;Song, Lulu;Li, Yuhong;Li, Ming

作者机构:

关键词: Prunus avium L;CYP78A;fruit size;VIGS;PaCYP78A9

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2017 年 8 卷

页码:

收录情况: SCI

摘要: Sweet cherry (Prunus avium L.) is an important fruit crop in which fruit size is strongly associated with commercial value; few genes associated with fruit size have, however, been identified in sweet cherry. Members of the CYP78A subfamily, a group of important cytochrome P450s, have been found to be involved in controlling seed size and development in Arabidopsis thaliana, rice, soybean, and tomato. However, the influence of CYP78A members in controlling organ size and the underlying molecular mechanisms in sweet cherry and other fruit trees remains unclear. Here, we characterized a P. avium CYP78A gene PaCYP78A9 that is thought to be involved in the regulation of fruit size and organ development using overexpression and silencing approaches. PaCYP78A9 was significantly expressed in the flowers and fruit of sweet cherry. RNAi silencing of PaCYP78A9 produced small cherry fruits and PaCYP78A9 was found to affect fruit size by mediating mesocarp cell proliferation and expansion during fruit growth and development. Overexpression of PaCYP78A9 in Arabidopsis resulted in increased silique and seed size and PaCYP78A9 was found to be highly expressed in the inflorescences and siliques of transgenic plants. Genes related to cell cycling and proliferation were downregulated in fruit from sweet cherry TRV::PaCYP78A9-silencing lines, suggesting that PaCYP78A9 is likely to be an important upstream regulator of cell cycle processes. Together, our findings indicate that PaCYP78A9 plays an essential role in the regulation of cherry fruit size and provide insights into the molecular basis of the mechanisms regulating traits such as fruit size in P. avium.

分类号:

  • 相关文献

[1]DESCRIPTION AND ASSESSMENT OF CHEMICAL PROPERTIES OF FRUITS OF THE CHOCOLATE VINE (FIVE-LEAF AKEBIA) AKEBIA QUINATA (HOUTT.) DECNE AND DEAD MAN'S FINGERS DECAISNEA INSIGNIS (GRIFF.) HOKK. F. & THOMSON, GROWN IN SZCZECIN AND IN THE ARBORETUM IN GLINNA (NORTHWESTERN POLAND). Ochmian, Ireneusz,Kubus, Marcin,Guan, Tianshu. 2014

[2]Effected Cultural Practices on Fruit Quality and Polyphenols Content. Khanizadeh, S.,Charles, M. T.,Fan, L.,Yu, C.,Tao, S.,Fan, L.. 2011

[3]Cloning, localization and expression analysis of two fw2.2-like genes in small- and large-fruited pear species. Tian Jia,Zeng Bin,Li Jiang,Luo Shu-ping,Li Xiu-gen,Wu Bin,Wu Bin.

[4]Mapping of quantitative trait loci corroborates independent genetic control of apple size and shape. Chang, Yuansheng,Sun, Rui,Sun, Huanhuan,Wang, Yi,Zhang, Xinzhong,Han, Zhenhai,Zhao, Yongbo,Chen, Dongmei,Han, Yuepeng.

[5]Changes in cell number and cell size during pineapple (Ananas comosus L.) fruit development and their relationship with fruit size. Li, Yun-He,Zhang, Zhi,Sun, Guang-Ming,Li, Yun-He,Sun, Guang-Ming.

[6]Effect of Nutrient Solution Concentration on the Growth and Quality of Paprika Grown by Fertigation Using Waste Nutrient Solution. Lim, Yong Sup,Kang, Ho-Min,Kim, Il Seop,Zhang, Cheng Hao.

[7]Molecular characterisation and functional analysis of a cytochrome P450 gene in cotton. Zhou, Kexue,Long, Lu,Sun, Quan,Wang, Weina,Gao, Wei,Cai, Chaowei,Mo, Jianchuan,Cheng, Jieru,Zhang, Xiangrui,Liu, Yujia,Miao, Chen,Zhang, Xiao,Cai, Yingfan,Du, Xiongming,Shi, Yuzhen,Yuan, Youlu,Chu, Zongyan.

[8]Characterization, Expression, and Functional Analysis of a Novel NAC Gene Associated with Resistance to Verticillium Wilt and Abiotic Stress in Cotton. Wang, Weina,Geng, Shuaipeng,Sun, Quan,Long, Lu,Cai, Chaowei,Liu, Xin,Wang, Guanghao,Miao, Chen,Zhang, Xiao,Cai, Yingfan,Wang, Weina,Yang, Can,Yuan, Youlu,Du, Xiongming,Chu, Zongyan. 2016

[9]A Novel AP2/ERF Transcription Factor CR1 Regulates the Accumulation of Vindoline and Serpentine in Catharanthus roseus. Gao, Fangyuan,Ren, Juansheng,Lu, Xianjun,Ren, Guangjun,Wang, Rui. 2017

[10]Two Lysin-Motif Receptor Kinases, Gh-LYK1 and Gh-LYK2, Contribute to Resistance against Verticillium wilt in Upland Cotton. Li, Fangfang,Qian, Shasha,Zhou, Xueping,Gu, Zhouhang,Wang, Qian,Ye, Fei,Liu, Tingli,Chen, Tianzi,Yang, Yuwen,Wang, Jinyan,Zhang, Baolong,Ding, Bo,Wang, Guoliang,Zhou, Xueping. 2017

[11]Genome-wide analysis of bHLH transcription factor and involvement in the infection by yellow leaf curl virus in tomato (Solanum lycopersicum). Wang, Jinyan,Hu, Zhongze,Zhao, Tongmin,Yang, Yuwen,Chen, Tianzi,Yang, Mali,Yu, Wengui,Zhang, Baolong. 2015

[12]Prediction of VIGS efficiency by the Sfold program and its reliability analysis in Gossypium hirsutum. Xiaoyang Ge,Jie Wu,Chaojun Zhang,Qianhua Wang,Yuxia Hou,Zuoren Yang,Zhaoen Yang,Zhenzhen Xu,Ye Wang,Lili Lu,Xueyan Zhang,Jinping Hua,Fuguang Li. 2016

[13]Identification of Putative Genes Involved in Limonoids Biosynthesis in Citrus by Comparative Transcriptomic Analysis. Wang, Fusheng,Liu, Xiaona,Xu, Yuanyuan,Zhu, Shiping,Shen, Wanxia,Zhao, Xiaochun,Wang, Fusheng,Liu, Xiaona,Xu, Yuanyuan,Zhu, Shiping,Shen, Wanxia,Zhao, Xiaochun,Wang, Fusheng,Zhu, Shiping,Shen, Wanxia,Zhao, Xiaochun,Wang, Fusheng,Wang, Mei. 2017

[14]Cotton Leaf Curl Multan Virus-Derived Viral Small RNAs Can Target Cotton Genes to Promote Viral Infection. Yang, Yuwen,Ma, Na,Ling, Xitie,Kan, Jialiang,Zhang, Baolong,Tang, Yafei,He, Zifu. 2016

[15]Silencing of NbXrn4 facilitates the systemic infection of Tobacco mosaic virus in Nicotiana benthamiana. Yan, Fei,Lu, Yuwen,Lin, Lin,Zheng, Hongying,Chen, Jianping,Yan, Fei,Lu, Yuwen,Lin, Lin,Zheng, Hongying,Chen, Jianping,Peng, Jiejun,Chen, Hairu,Yang, Jian,Jiang, Shanshan. 2011

[16]Molecular cloning and characterization of enhanced disease susceptibility 1 (EDS1) from Gossypium barbadense. Su, Xiaofeng,Qi, Xiliang,Cheng, Hongmei.

[17]Virus-induced silencing of a tobacco deoxyhypusine synthase gene. Wang, HZ,Ma, RC,Li, RF,Wang, GY,Wei, JH.

作者其他论文 更多>>