Multi-omics analyses of red blood cell reveal antioxidation mechanisms associated with hemolytic toxicity of gossypol

文献类型: 外文期刊

第一作者: Tang, Chaohua

作者: Tang, Chaohua;Meng, Qingshi;Zhang, Kai;Zhan, Tengfei;Zhao, Qingyu;Zhang, Junmin;Tang, Chaohua;Meng, Qingshi;Zhang, Kai;Zhan, Tengfei;Zhao, Qingyu;Zhang, Junmin;Zhang, Sheng

作者机构:

关键词: gossypol;red blood cell;hemolytic toxicity;metabolomics;proteomics

期刊名称:ONCOTARGET ( 影响因子:5.168; 五年影响因子:5.312 )

ISSN: 1949-2553

年卷期: 2017 年 8 卷 61 期

页码:

收录情况: SCI

摘要: Gossypol is an antiproliferative drug with limited use due to its hemolytic toxicity. In this study, accelerated hemolysis was observed in the cows treated with gossypol. Comparative metabolomics were used to gain responsive pathways in the red blood cell (RBC) to the treatment, which were crossly validated by parallel iTRAQ-based proteomic analysis and enzyme activity assay. We found that gossypol treatment appeared to considerably activate pentose phosphate pathway (PPP) with an increased key product of ribose-5-phosphate and the increased abundance and activity of several key enzymes such as 6-phosphogluconate dehydrogenase, flavin reductase, and ribose-phosphate pyrophesphokinase. Meanwhile, a decreased glycolysis metabolism was observed, as many input metabolites of glycolysis were reduced in the gossypol group, whereas its distal metabolites were unchanged, along with decreased abundance of triosephosphate isomerase and increased abundance of enzymes catalyzing several distal glycolytic steps. Oxidative reduction pathways were also remarkably affected as we found a decreased substrate of flavin reductase, glutathione disulfide, increased glutathione reductase activity, and increased abundance and activity of glutathione S-transferase with the increase of its catalytic product, cysteine. Our results demonstrated that glycolysis, PPP, and oxidative reduction pathways of RBC were all involved in RBC's response to the hemolytic toxicity of gossypol.

分类号:

  • 相关文献

[1]Effect of the DGAT1 K232A genotype of dairy cows on the milk metabolome and proteome. Lu, Jing,van Hooijdonk, Toon,Hettinga, Kasper,Lu, Jing,Boeren, Sjef,Vervoort, Jacques,Lu, Jing.

[2]Metabolic responses and "omics" technologies for elucidating the effects of heat stress in dairy cows. Min, Li,Zhao, Shengguo,Tian, He,Zhou, Xu,Zhang, Yangdong,Li, Songli,Zheng, Nan,Wang, Jiaqi,Min, Li,Yang, Hongjian.

[3]Soybean Omics and Biotechnology in China. Guo, Yong,Wang, Xiao-Bo,He, Wei,Zhou, Guo-An,Guo, Bing-Fu,Zhang, Le,Liu, Zhang-Xiong,Luo, Zhong-Qin,Wang, Li-Hui,Qiu, Li-Juan. 2011

[4]Niemann-Pick C2 Proteins: A New Function for an Old Family. Guo, Mengbuo,Liu, Yang,Pelosi, Paolo,Wang, Guirong,Ban, Liping,Song, Li-Mei. 2018

[5]Temporal allocation of metabolic tolerance in the body of beet armyworm in response to three gossypol-cotton cultivars. Wu Gang,Guo JianYing,Wan FangHao,Wu Gang,Harris, Marvin K.. 2009

[6]Effects of different sources and levels of dietary gossypol on gossypol residues in plasma and milk of lactating cows. Wang, A. P.,Zhang, J. M.,Meng, Y. L.,Deng, L. Q.,Lv, Y. F.,Li, C.,Wang, J. Q.,Wang, A. P.,Lv, Y. F.. 2012

[7]Metabolic Characterization of Dairy Cows Treated with Gossypol by Blood Biochemistry and Body Fluid Untargeted Metabolome Analyses. Tang, Chaohua,Zhang, Kai,Zhan, Tengfei,Zhao, Qingyu,Zhang, Junmin,Tang, Chaohua,Zhang, Kai,Zhan, Tengfei,Zhao, Qingyu,Zhang, Junmin.

[8]Design, Synthesis, and Biological Activities of Aromatic Gossypol Schiff Base Derivatives. Li, Ling,Li, Zheng,Wang, Kailiang,Liu, Yuxiu,Wang, Lizhong,Li, Yongqiang,Wang, Qingmin,Li, Jiarui,Yang, Peiwen,Shang, Hui,Zhao, Sheng,Feng, Jiming.

[9]Metabolic engineering of gossypol in cotton. Zhou, Meiliang,Zhang, Chengcheng,Wu, Yanmin,Tang, Yixiong. 2013

[10]Mapping quantitative trait loci for cottonseed oil, protein and gossypol content in a Gossypium hirsutum x Gossypium barbadense backcross inbred line population. Yu, Jiwen,Yu, Shuxun,Fan, Shuli,Song, Meizhen,Zhai, Honghong,Li, Xingli,Zhang, Jinfa.

[11]Determination of Gossypol in Poultry Egg and Feed by Automated Solid-Phase Extraction and High-Performance Liquid Chromatography. Shi, Zu-Hao,Tang, Meng-Jun,Zhang, Xiao-Yan,Tao, Zhi-Yun,Wu, Ming,Gao, Yu-Shi,Gu, Rong,Lu, Jun-Xian,Pu, Jun-hua,Ge, Qing-Lian.

[12]Identification of Metabolites and Transcripts Involved in Salt Stress and Recovery in Peanut. Cui, Feng,Liu, Yiyang,Han, Yan,Wan, Shubo,Li, Guowei,Cui, Feng,Liu, Yiyang,Han, Yan,Wan, Shubo,Li, Guowei,Sui, Na,Liu, Shanshan,Duan, Guangyou. 2018

[13]Nonylphenol Toxicity Evaluation and Discovery of Biomarkers in Rat Urine by a Metabolomics Strategy through HPLC-QTOF-MS. Zhang, Yan-Xin,Yang, Xin,Zou, Pan,Du, Peng-Fei,Wang, Jing,Jin, Fen,Jin, Mao-Jun,She, Yong-Xin,Du, Peng-Fei,Wang, Jing,Jin, Fen,Jin, Mao-Jun,She, Yong-Xin. 2016

[14]Serum Metabolic Profiling of Oocyst-Induced Toxoplasma gondii Acute and Chronic Infections in Mice Using Mass-Spectrometry. Zhou, Chun-Xue,Chen, Xiao-Qing,Zhu, Xing-Quan,Zhou, Chun-Xue,He, Shen-Yi,Cong, Wei,Chen, Xiao-Qing,Elsheikha, Hany M.. 2018

[15]Comparative metabolomics in vanilla pod and vanilla bean revealing the biosynthesis of vanillin during the curing process of vanilla. Gu, Fenglin,Hong, Yinghua,Fang, Yiming,Tan, Lehe,Chen, Yonggan,Gu, Fenglin,Fang, Yiming,Tan, Lehe. 2017

[16]Metabolite profiles of rice cultivars containing bacterial blight-resistant genes are distinctive from susceptible rice. Huang, Xin,Zhu, Shuifang,Wu, Jiao,Yu, Haichuan,Wu, Jiao,Dai, Haofu,Mei, Wenli,Peng, Ming. 2012

[17]Comparison of Salt Tolerance in Soja Based on Metabolomics of Seedling Roots. Li, Mingxia,Jiao, Yang,Zhang, Haiyan,Shi, Lianxuan,Guo, Rui,Jin, Xiaofei. 2017

[18]Utilization of UPLC/Q-TOF-MS-Based Metabolomics and AFLP-Based Marker-Assisted Selection to Facilitate/Assist Conventional Breeding of Polygala tenuifolia. Li, Juan,Wang, Dan-Dan,Bai, Lu,Pu, Ya-Jie,Qin, Xue-Mei,Zhang, Fu-Sheng,Wang, Dan-Dan,Bai, Lu,Pu, Ya-Jie,Xu, Xiao-Shuang,Peng, Bing,Tian, Hong-Ling,Ma, Cun-Gen. 2017

[19]The Antagonistic Effect of Mycotoxins Deoxynivalenol and Zearalenone on Metabolic Profiling in Serum and Liver of Mice. Ji, Jian,Cui, Fangchao,Pi, Fuwei,Zhang, Yinzhi,Li, Yun,Wang, Jiasheng,Sun, Xiulan,Zhu, Pei,Ji, Jian,Zhu, Pei,Cui, Fangchao,Pi, Fuwei,Zhang, Yinzhi,Sun, Xiulan,Li, Yun,Wang, Jiasheng. 2017

[20]Nontargeted Analysis Using Ultraperformance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry Uncovers the Effects of Harvest Season on the Metabolites and Taste Quality of Tea (Camellia sinensis L.). Dai, Weidong,Qi, Dandan,Yang, Ting,Lv, Haipeng,Guo, Li,Zhang, Yue,Zhu, Yin,Peng, Qunhua,Xie, Dongchao,Tan, Junfeng,Lin, Zhi.

作者其他论文 更多>>