Genetic Dissection of the Major Quantitative Trait Locus (qSE11), and Its Validation As the Major Influence on the Rate of Stigma Exsertion in Rice (Oryza sativa L.)

文献类型: 外文期刊

第一作者: Rahman, Md Habibur

作者: Rahman, Md Habibur;Zhang, Yingxing;Zhang, Keqin;Barman, Hirendra N.;Riaz, Aamir;Chen, Yuyu;Wu, Weixun;Zhan, Xiaodeng;Cao, Liyong;Cheng, Shihua;Rahman, Md Habibur;Rahman, Md Sazzadur;Barman, Hirendra N.

作者机构:

关键词: stigma exsertion rate;genetic dissection;major QTL (qSE11);near isogenic line;hybrid rice

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2017 年 8 卷

页码:

收录情况: SCI

摘要: The rate of stigma exsertion (SE) is an important trait in rice breeding because the efficiency of hybrid rice seed production can be improved by increasing the percentage of stigmas that exsert. In this study, we developed a near isogenic line (NIL) from two parents, XieqingzaoB (XQZB) and Zhonghoi9308 (ZH9308), which have high and low SE rates in that order. In our previous study, we employed 75 chromosome segment substitution lines (CSSLs) and analyzed quantitative trait loci (QTLs) for their influence on SE rate. The single gene QTL (qSE11), which is located on chromosome 11, was responsible for this trait. In this study, we focused on one of the CSSLs (C65), namely, the NIL (qSE11XB). It contains an introgression segment of XQZB in the genetic background of ZH9308, and exhibits a significantly higher SE rate than that of the parents. We demonstrated that qSE11 regulated both the single and the dual SE rates. They both contribute to the total SE rate. Genetic analysis revealed that qSE11 acted as a single Mendelian factor and that the allele from XQZB increased the SE rate. The validity of our conclusions was established when C65 was used to develop secondary F2 (BC5F2) and F2:3 (BC5F2:3) populations by backcrossing to ZH9308, with subsequent selfing. We entered 3600 plants from the F-2 population and 3200 from the F-2:3 populations into a genetic dissection program and dissected the major QTL qSE11 to a 350.7-kb region located on chromosome 11. This study will contribute to the future isolation of candidate genes of SE and will play a vital role in future hybrid rice seed production programs.

分类号:

  • 相关文献

[1]Genetic mapping of quantitative trait loci for the stigma exsertion rate in rice (Oryza sativa L.). Rahman, Md Habibur,Zhang Ying-xin,Sun Lien-ping,Zhang Ke-qin,Wu Wei-xun,Zhan Xiao-deng,Cao Li-yong,Cheng Shi-hua,Rahman, Md Habibur,Rahman, Md Sazzadur. 2017

[2]Genetic dissection of the resistance to Rice stripe virus present in the indica rice cultivar 'IR24'. Wang, Baoxiang,Jiang, Ling,Zhang, Yingxin,Zhang, Wenwei,Wang, Qi,Liu, Shijia,Liu, Yuqiang,Cheng, Xianian,Wan, Jianmin,Zhai, Huqu,Wan, Jianmin. 2011

[3]Discussion on strategy of grain quality improvement for super high yielding japonica rice in Northeast China. Mao Ting,Tang Liang,Wang Jia-yu,Xu Hai,Xu Zheng-jin,Li Xu,Jiang Shu-kun. 2017

[4]Genetic dissection of a chromosomal region conferring hybrid sterility using multi-donors from Oryza glaberrima. Zhou, Jiawu,Zhao, Zhigang,Jiang, Ling,Wan, Jianmin,Zhou, Jiawu,Xu, Peng,Deng, Xianneng,Li, Jing,Hu, Fengyi,Deng, Wei,Tao, Dayun,Ren, Guangyun,Zhang, Zhi,Luan, Yahong.

[5]Genetic dissection of QTL against phosphate deficiency in the hybrid rice 'Xieyou9308'. Zhang, Yingxin,Anis, Galal Bakr,Wu, Weiming,Yu, Ning,Shen, Xihong,Zhan, Xiaodeng,Cheng, Shihua,Cao, Liyong,Wang, Ruci,Zhang, Yingxin,Wu, Weiming,Shen, Xihong,Zhan, Xiaodeng,Cheng, Shihua,Cao, Liyong,Anis, Galal Bakr. 2018

[6]The role of S1-g allele from Oryza glaberrima in improving interspecific hybrid sterility between O. sativa and O. glaberrima. Deng, Xianneng,Zhou, Jiawu,Xu, Peng,Li, Jing,Hu, Fengyi,Tao, Dayun,Deng, Xianneng. 2010

[7]GmSALT3, Which Confers Improved Soybean Salt Tolerance in the Field, Increases Leaf Cl- Exclusion Prior to Na+ Exclusion But Does Not Improve Early Vigor under Salinity. Liu, Ying,Yu, Lili,Chen, Jingling,Liu, Xiexiang,Hong, Huilong,Liu, Zhangxiong,Chang, Ruzhen,Qiu, Lijuan,Guan, Rongxia,Qu, Yue,Gilliham, Matthew,Qu, Yue,Gilliham, Matthew. 2016

[8]Detection of homozygosity in near isogenic Lines of non-susceptible to Zhenjiang strain of densonucleosis virus in silkworm. Li Muwang,Hou Chengxiang,Zhao Yunpo,Xu Anying,Guo Xijie,Huang Yongping. 2007

[9]Genetic dissection of a thousand-grain weight quantitative trait locus on rice chromosome 1. Yu ShouWu,Yang ChangDeng,Fan YeYang,Zhuang JieYun,Li XiMing.

[10]Dissection of qTGW1.2 to three QTLs for grain weight and grain size in rice (Oryza sativa L.). Wang, Lin-Lin,Chen, Yu-Yu,Guo, Liang,Zhang, Hong-Wei,Fan, Ye-Yang,Zhuang, Jie-Yun,Wang, Lin-Lin,Chen, Yu-Yu,Guo, Liang,Zhang, Hong-Wei,Fan, Ye-Yang,Zhuang, Jie-Yun.

[11]Quantitative trait loci for cold tolerance of rice recombinant inbred lines in low temperature environments. Jiang, Wenzhu,Pan, Hong-Yu,Du, Xinglin,Jin, Yong-Mei,Lee, Joohyun,Lee, Kang-Ie,Piao, Rihua,Koh, Hee-Jong,Jin, Yong-Mei,Lee, Joohyun,Lee, Kang-Ie,Piao, Rihua,Koh, Hee-Jong,Han, Longzhi,Shin, Jin-Chul,Jin, Rong-De,Cao, Tiehua. 2011

[12]Identification of QTLs controlling grain protein concentration using a high-density SNP and SSR linkage map in barley (Hordeum vulgare L.). Fan, Chaofeng,Zhai, Huijie,Wang, Huifang,Yue, Yafei,Zhang, Minghu,Li, Jinghui,Wen, Shaozhe,Ni, Zhongfu,You, Mingshan,Fan, Chaofeng,Zhai, Huijie,Wang, Huifang,Yue, Yafei,Zhang, Minghu,Li, Jinghui,Wen, Shaozhe,Ni, Zhongfu,You, Mingshan,Guo, Ganggang,Zeng, Yawen. 2017

[13]A possible mechanism for breakdown of resistance in hybrid rice to blast disease. Chen, GH,He, M. 1998

[14]Studies on the Complementary Differential Varieties and Local Physiologic Races of Magnaporthe grisea in Sichuan Province. . 2009

[15]NO-TILLAGE AND WIDE PLANT SPACING FOR HYBRID RICE PRODUCTION IN SOUTHWEST CHINA. . 2017

[16]Comparisons of yield performance and nitrogen response between hybrid and inbred rice under different ecological conditions in southern China. Xu Fu-xian,Xiong Hong,Jiang Peng,Xie Xiao-bing,Huang Min,Zhou Xue-feng,Zhang Rui-chun,Chen Jia-na,Wu Dan-dan,Xia Bing,Zou Ying-bin,Zou Ying-bin. 2015

[17]Potential Yield Increase of Hybrid Rice at Five Locations in Southern China. Xiong, Hong,Xu, Fuxian,Jiang, Peng,Xie, Xiaobing,Huang, Min,Zhou, Xuefeng,Zhang, Ruichun,Chen, Jiana,Wu, Dandan,Xia, Bing,Zou, Yingbin,Jiang, Peng,Xiong, Hong,Xu, Fuxian. 2016

[18]Analysis of the Resistance to Rice Blast and False Smut of 18 Varieties of Hybrid Rice in Sichuan Province, China. Shi, Jun,Xiang, Zufen,Shi, Shoupei,Peng, Tao,Liu, Dingyou,Huang, Tingyou,Hu, Rongping. 2017

[19]Photochemical efficiency of PSII and characteristics of photosynthetic CO2 exchange in Indica and Japonica subspecies of rice and their reciprocal cross F-1 hybrids under photoinhibitory conditions. Ji, BH,Jiao, DM. 1999

[20]The Comparison in Tissue Culture Ability of Mature Embryo in Different Cultivars of Rice. Yan Li-na,Li Xia,Wu Dan,Yan Li-na. 2010

作者其他论文 更多>>