Assessment of the MODIS LAI Product Using Ground Measurement Data and HJ-1A/1B Imagery in the Meadow Steppe of Hulunber, China

文献类型: 外文期刊

第一作者: Li, Zhenwang

作者: Li, Zhenwang;Tang, Huan;Xin, Xiaoping;Zhang, Baohui;Wang, Dongliang

作者机构:

关键词: leaf area index (LAI);Moderate Resolution Imaging Spectroradiometer (MODIS);HJ-1A/1B;validation;meadow steppe;Hulunber

期刊名称:REMOTE SENSING ( 影响因子:4.848; 五年影响因子:5.353 )

ISSN: 2072-4292

年卷期: 2014 年 6 卷 7 期

页码:

收录情况: SCI

摘要: The leaf area index (LAI) is a crucial parameter of vegetation structure. It provides key information for earth surface process simulations and climate change research on the global and regional scales. Focusing on the meadow steppe in Hulunber, Inner Mongolia, China, the present study assessed the accuracy of the Moderate Resolution Imaging Spectroradiometer (MODIS) LAI product in the study area. First, seven field campaigns collecting ground-based measurements were conducted during the growing season in 2013, and 252 pairs of LAIs and spectra were collected. Then, seven scenes of high-resolution LAI maps were obtained from the corresponding 30 m Chinese HJ-1A/1B charge-coupled diode (CCD) images by employing a regression approach. Finally, comparisons between the MODIS LAI product and the high resolution LAI maps were made to determine the accuracy of the MODIS LAI product. Moreover, the corresponding 500 m MODIS LAI maps were derived from the daily MODIS surface reflectance product to support the findings using the 1 km HJ LAI product and the ground-based comparison. The results showed that, compared to the ground data, the MODIS LAI product followed a reasonable seasonal trajectory during the growing season. However, an anomaly existed at the beginning of the growing season. Also, a slight overestimation was found for the MODIS LAI product compared to the HJ-retrieved LAI maps. The average overestimation for the LAI was approximately 0.4 m(2)/m(2), and the relative absolute errors of the product ranged from 10%-50%. The overestimation at the beginning and end of the growing season was higher due to the interference of soil background and grass variation. The results of this study provide a comprehensive understanding of the accuracy of the regional MODIS LAI product for the Hulunber meadow steppe. This research is important for improving regional modeling and prediction of vegetation biogeochemical processes and earth system productivity.

分类号:

  • 相关文献

[1]Evaluation of MODIS land cover and LAI products in cropland of North China plain using in situ measurements and landsat TM images. Yang, Peng,Shibasaki, Ryosuke,Wu, Wenbin,Zhou, Qingbo,Chen, Zhongxin,Zha, Yan,Shi, Yun,Tang, Huajun. 2007

[2]Comparisons of MODIS LAI products and LAI estimates derived from Landsat TM. Yang, Peng,Chen, Zhongxin,Zhou, Qingbo,Zha, Yan,Wu, Wenbin,Shibasaki, Ryosuke. 2006

[3]Effects of cattle grazing on small mammal communities in the Hulunber meadow steppe. Cao, Chan,Shuai, Ling-Ying,Song, Yan-Ling,Zeng, Zhi-Gao,Cao, Chan,Xin, Xiao-Ping,Liu, Zhi-Tao. 2016

[4]VALIDATION OF MODIS FAPAR PRODUCTS IN HULUNBER GRASSLAND OF CHINA. Li, Gang,Xin, Xiaoping,Zhang, Hongbin,Li, Gang,Xin, Xiaoping,Zhang, Hongbin,Wang, Daolong,Zhang, Hua,Xin, Xiaoping,Zhang, Hongbin,Liu, Shimin. 2010

[5]Estimating grassland LAI using the Random Forests approach and Landsat imagery in the meadow steppe of Hulunber, China. Li Zhen-wang,Xin Xiao-ping,Tang Huan,Yang Fan,Chen Bao-rui,Zhang Bao-hui. 2017

[6]Grazing intensity and driving factors affect soil nitrous oxide fluxes during the growing seasons in the Hulunber meadow steppe of China. Yan, Ruirui,Tang, Huajun,Xin, Xiaoping,Chen, Baorui,Yan, Yunchun,Wang, Xu,Yang, Guixia,Murray, Philip J.. 2016

[7]Linking nutrient strategies with plant size along a grazing gradient: Evidence from Leymus chinensis in a natural pasture. Li Xi-liang,Liu Zhi-ying,Ren Wei-bo,Ding Yong,Ji Lei,Guo Feng-hui,Hou Xiang-yang. 2016

[8]Extending the Pairwise Separability Index for Multicrop Identification Using Time-Series MODIS Images. Hu, Qiong,Wu, Wenbin,Yu, Qiangyi,Lu, Miao,Yang, Peng,Tang, Huajun,Long, Yuqiao,Song, Qian,Song, Qian.

[9]Estimating Winter Wheat Leaf Area Index From Ground and Hyperspectral Observations Using Vegetation Indices. Xie, Qiaoyun,Huang, Wenjiang,Zhang, Bing,Dong, Yingying,Xie, Qiaoyun,Chen, Pengfei,Song, Xiaoyu,Pascucci, Simone,Pignatti, Stefano,Laneve, Giovanni. 2016

[10]INTEGRATION OF MULTI-RESOLUTION DATA FOR CROP LAI ESTIMATION BASED ON CONTINUOUS WAVELET. Dong, Yingying,Wang, Jihua,Li, Cunjun,Yang, Guijun,Xu, Xingang,Zhao, Jinling,Huang, Wenjiang. 2012

[11]Comparison and Analysis of Data Assimilation Algorithms for Predicting the Leaf Area Index of Crop Canopies. Dong, Yingying,Wang, Jihua,Wang, Huifang,Li, Cunjun,Yang, Guijun,Wang, Qian,Liu, Feng,Zhao, Jinling,Huang, Wenjiang,Huang, Wenjiang. 2013

[12]Estimating Wheat Yield in China at the Field and District Scale from the Assimilation of Satellite Data into the Aquacrop and Simple Algorithm for Yield (SAFY) Models. Silvestro, Paolo Cosmo,Casa, Raffaele,Pignatti, Stefano,Pascucci, Simone,Yang, Hao,Li, Zhenhai,Yang, Guijun,Huang, Wenjiang. 2017

[13]Leaf Area Index Estimation Using Vegetation Indices Derived From Airborne Hyperspectral Images in Winter Wheat. Xie, Qiaoyun,Huang, Wenjiang,Liang, Dong,Huang, Linsheng,Zhang, Dongyan,Chen, Pengfei,Wu, Chaoyang,Yang, Guijun,Zhang, Jingcheng. 2014

[14]A New Method for LAI Spatial Scaling based on Gaussian Distribution Theory. Dong, Yingying,Wang, Jihua,Li, Cunjun,Xu, Xingang,Zhao, Jinling,Wang, Huifang,Huang, Wenjiang. 2012

[15]Comparison and Analysis of Data Upscaling Schemes for Predicting Crop Leaf Area Index. Dong, Yingying,Feng, Haikuan,Wang, Jihua,Li, Cunjun,Yang, Guijun,Huang, Wenjiang,Dong, Yingying,Wang, Jihua. 2012

[16]A model with leaf area index and apple size parameters for 2.4 GHz radio propagation in apple orchards. Guo, Xiu-ming,Guo, Xiu-ming,Yang, Xin-ting,Chen, Mei-xiang,Li, Ming,Wang, Yan-an.

[17]Jointly Assimilating MODIS LAI and ET Products Into the SWAP Model for Winter Wheat Yield Estimation. Huang, Jianxi,Ma, Hongyuan,Su, Wei,Zhang, Xiaodong,Huang, Jianxi,Ma, Hongyuan,Su, Wei,Zhang, Xiaodong,Huang, Yanbo,Fan, Jinlong,Wu, Wenbin. 2015

[18]Estimation of regional crop yield by assimilating multi-temporal TM images into crop growth model. Yang, Peng,Zhou, Qingbo,Chen, Zhongxin,Zha, Yan,Wu, Wenbin,Shibasaki, Ryosuke. 2006

[19]Integrating a very fast simulated annealing optimization algorithm for crop leaf area index variational assimilation. Dong, Yingying,Zhao, Chunjiang,Yang, Guijun,Chen, Liping,Wang, Jihua,Feng, Haikuan,Dong, Yingying,Zhao, Chunjiang.

[20]Developing a photosynthetic sterility model to estimate CO2 fixation through the crop yield in Asia with the aid of MODIS data. Kaneko, Daijiro,Yeh, P. J. -F.,Kumakura, Toshiro,Yang, Peng. 2010

作者其他论文 更多>>