A genotypic difference in primary root length is associated with the inhibitory role of transforming growth factor-beta receptor-interacting protein-1 on root meristem size in wheat

文献类型: 外文期刊

第一作者: He, Xue

作者: He, Xue;Fang, Jingjing;Li, Jingjuan;Qu, Baoyuan;Ren, Yongzhe;Ma, Wenying;Zhao, Xueqiang;Li, Bin;Wang, Daowen;Li, Zhensheng;Tong, Yiping;Fang, Jingjing;Li, Jingjuan;Ren, Yongzhe

作者机构:

关键词: primary root length;Triticum aestivum L.;reactive oxygen species;root meristem size;brassinosteroid;proteomics;peroxidase;TGF-beta receptor-interacting protein-1

期刊名称:PLANT JOURNAL ( 影响因子:6.417; 五年影响因子:7.627 )

ISSN: 0960-7412

年卷期: 2014 年 77 卷 6 期

页码:

收录情况: SCI

摘要: Previously we identified a major quantitative trait locus (QTL) qTaLRO-B1 for primary root length (PRL) in wheat. Here we compare proteomics in the roots of the qTaLRO-B1 QTL isolines 178A, with short PRL and small meristem size, and 178B, with long PRL and large meristem size. A total of 16 differentially expressed proteins were identified: one, transforming growth factor (TGF)-beta receptor-interacting protein-1 (TaTRIP1), was enriched in 178A, while various peroxidases (PODs) were more abundantly expressed in 178B. The 178A roots showed higher TaTRIP1 expression and lower levels of the unphosphorylated form of the brassinosteroid (BR) signaling component BZR1, lower expression of POD genes and reduced POD activity and accumulation of the superoxide anion O-2(-) in the root elongation zone compared with the 178B roots. Low levels of 24-epibrassinolide increased POD gene expression and root meristem size, and rescued the short PRL phenotype of 178A. TaTRIP1 directly interacted with the BR receptor TaBRI1 of wheat. Moreover, overexpressing TaTRIP1 in Arabidopsis reduced the abundance of unphosphorylated BZR1 protein, altered the expression of BR-responsive genes, inhibited POD activity and accumulation of the O-2(-) in the root tip and inhibited root meristem size. Our data suggested that TaTRIP1 is involved in BR signaling and inhibited root meristem size, possibly by reducing POD activity and accumulation of O-2(-) in the root tip. We further demonstrated a negative correlation between the level of TaTRIP1 mRNA and PRL of landraces and modern wheat varieties, providing a valuable insight for better understanding of the molecular mechanism underlying the genotypic differences in root morphology of wheat in the future.

分类号:

  • 相关文献

[1]Improved tolerance toward low temperature in banana (Musa AAA Group Cavendish Williams). Chen, Y. J.,Sun, L. L.,Song, L. Y.,Peng, C. L.,Zhang, J. Z.,Zhang, J. Z.. 2012

[2]Proteomic alterations in mouse kidney induced by andrographolide sodium bisulfite. Lu, Hong,Zhou, Yan-quan,Zhang, Xin-yue,Zhou, Yan-quan,Zhu, Li-ying,Wen, Xin. 2011

[3]Characterization and cloning of SMALL GRAIN 4, a novel DWARF11 allele that affects brassinosteroid biosynthesis in rice. Shi, Zhenyuan,Rao, Yuchun,Xu, Jie,Hu, Shikai,Fang, Yunxia,Yu, Haiping,Pan, Jiangjie,Liu, Ruifang,Ren, Deyong,Wang, Xiaohu,Zhu, Yangzhou,Zhu, Li,Dong, Guojun,Zhang, Guangheng,Zeng, Dali,Guo, Longbiao,Hu, Jiang,Qian, Qian,Rao, Yuchun,Zhu, Yangzhou,Xu, Jie. 2015

[4]Somatic embryogenesis receptor-like kinase 5 in the ecotype Landsberg erecta of Arabidopsis is a functional RD LRR-RLK in regulating brassinosteroid signaling and cell death control. Wu, Wangze,Wu, Yujun,Gao, Yang,Li, Meizhen,Yin, Hongju,Lv, Minghui,Zhao, Jianxin,Li, Jia,He, Kai,Wu, Wangze. 2015

[5]Integrative RNA-and miRNA-Profile Analysis Reveals a Likely Role of BR and Auxin Signaling in Branch Angle Regulation of B. napus. Cheng, Hongtao,Hao, Mengyu,Wang, Wenxiang,Mei, Desheng,Liu, Jia,Wang, Hui,Sang, Shifei,Tang, Min,Zhou, Rijin,Chu, Wen,Fu, Li,Hu, Qiong,Wells, Rachel. 2017

[6]Transcriptome Analysis of Pepper (Capsicum annuum) Revealed a Role of 24-Epibrassinolide in Response to Chilling. Li, Jie,Yu, Jihua,Lyu, Jian,Zhang, Guobin,Feng, Zhi,Xie, Jianming,Yang, Ping,Kang, Jungen,Gan, Yantai,Gan, Yantai,Calderon-Urrea, Alejandro. 2016

[7]A Quantitative Proteomic Analysis of Brassinosteroid-induced Protein Phosphorylation in Rice (Oryza sativa L.). Hou, Yuxuan,Qiu, Jiehua,Wang, Yifeng,Li, Zhiyong,Zhao, Juan,Tong, Xiaohong,Lin, Haiyan,Zhang, Jian,Lin, Haiyan. 2017

[8]BZS1, a B-box Protein, Promotes Photomorphogenesis Downstream of Both Brassinosteroid and Light Signaling Pathways. Bai, Ming-Yi,Wang, Zhi-Yong,Fan, Xi-Ying,Cao, Dong-Mei,Luo, Xiao-Min,Yang, Hong-Juan,Zhu, Sheng-Wei,Chong, Kang,Fan, Xi-Ying,Sun, Yu,Wei, Chuang-Qi,Sun, Ying,Cao, Dong-Mei,Fan, Xi-Ying. 2012

[9]Effects of exogenous 24-epibrassinolide treatment on postharvest quality and resistance of Satsuma mandarin (Citrus unshiu). Zhu, Feng,Yun, Ze,Ma, Qiaoli,Gong, Qi,Zeng, Yunliu,Xu, Juan,Cheng, Yunjiang,Deng, Xiuxin,Yun, Ze,Gong, Qi.

[10]Nitric oxide mediates brassinosteroid-induced flavonoid biosynthesis in Camellia sinensis L.. Li, Xin,Zhang, Lan,Ahammed, Golam Jalal,Li, Zhi-Xin,Wei, Ji-Peng,Shen, Chen,Yan, Peng,Zhang, Li-Ping,Han, Wen-Yan,Ahammed, Golam Jalal,Wei, Ji-Peng,Shen, Chen.

[11]OsMAPK6, a mitogen-activated protein kinase, influences rice grain size and biomass production. Liu, Shuying,Hua, Lei,Dong, Sujun,Jiang, Jun'e,Zhang, Fang,Fang, Xiaohua,Chen, Fan,Chen, Hongqi,Zhu, Xudong,Li, Yunhai.

[12]Transcriptional profiling of the responses to infection by the false smut fungus Ustilaginoidea virens in resistant and susceptible rice varieties. Yang, Chao,Li, Luoye,Li, Jianxiong,Feng, Aiqing,Zhu, Xiaoyuan.

[13]Effect of treatment with dimethyl dicarbonate on microorganisms and quality of Chinese cabbage. Chen, Yulong,Wang, Huihui,Xu, Yujuan,Wu, Jijun,Xiao, Gengsheng. 2013

[14]Bioaccumulation of microcystin and its oxidative stress in the apple (Malus pumila). Chen, Jianzhong,Zhang, Haiyang,Wang, Chenyi,Zhou, Guoqing,Han, Zhiping,Chen, Jianzhong,Liu, Zhili,Dai, Jian. 2010

[15]Photoprotective effects of high level expression Of C(4) phosphoenolpyruvate carboxylase in transgenic rice during photoinhibition. Jiao, DM,Li, X,Ji, BH. 2005

[16]Comparison of jasmine antioxidant system responses to different degrees and durations of shade. Deng, Yanming,Jia, Xinping,Sun, Xiaobo,Liang, Lijian,Su, Jiale. 2018

[17]Disruption of AtWNK8 Enhances Tolerance of Arabidopsis to Salt and Osmotic Stresses via Modulating Proline Content and Activities of Catalase and Peroxidase. Zhang, Baige,Liu, Kaidong,Zheng, Yan,Wang, Yingxiang,Wang, Jinxiang,Liao, Hong,Zhang, Baige,Liu, Kaidong,Wang, Jinxiang. 2013

[18]Deep Roots are Pivotal for Regulating Post-Anthesis Leaf Senescence in Wheat (Triticum aestivum L.). Kong, L.,Si, J.,Sun, M.,Feng, B.,Zhang, B.,Li, S.,Wang, Z.,Wang, F.,Wang, F.. 2013

[19]Effects of excess copper on the oxidative stress in roots of maize seedlings. Wang, Yan Zhao,Nie, Li Hong,Tie, Shuanggui,Xie, Deyi,Zhu, Weihong,Qi, Jianshuang,Yue, Runqing. 2011

[20]Physiological and Genetic Properties of Tomato Fruits from 2 Cultivars Differing in Chilling Tolerance at Cold Storage. Zhao, D. Y.,Shen, L.,Yu, M. M.,Zheng, Y.,Ding, Y.,Sheng, J. P.,Shen, L.,Fan, B.,Liu, K. L..

作者其他论文 更多>>