A fungal protein elicitor PevD1 induces Verticillium wilt resistance in cotton

文献类型: 外文期刊

第一作者: Qiu, Dewen

作者: Qiu, Dewen;Zeng, Hongmei;Guo, Lihua;Yuan, Jingjing;Yang, Xiufen

作者机构:

关键词: PevD1 elicitor;Cotton;Verticillium dahlia;Resistance response;Defense-related genes

期刊名称:PLANT CELL REPORTS ( 影响因子:4.57; 五年影响因子:4.463 )

ISSN: 0721-7714

年卷期: 2014 年 33 卷 3 期

页码:

收录情况: SCI

摘要: Key message We found that the elicitor PevD1 triggered innate immunity in cotton, which plays an important role in future cotton wilt disease control. Elicitors can induce defense responses in plants and improve pathogen resistance. PevD1 is a secreted protein from Verticillium dahliae and activates the hypersensitive response and systemic acquired resistance to tobacco mosaic virus in tobacco plants. To investigate the PevD1-induced disease resistance mechanisms in cotton (Gossypium hirsutum), we report that Escherichia coli expressing PevD1 enhanced cotton resistance and the defense response to the fungal pathogen V. dahliae. The results showed that recombinant PevD1 improved cotton resistance when infiltrated at a concentration as low as 4 mu g ml(-1), and the highest disease reduction was 38.16 % on the 15th day post V. dahliae inoculation. This protein was able to systemically induce hydrogen peroxide production, nitric oxide generation, lignin deposition, vessel reinforcement and defense enzymes, including phenylalanine ammonia-lyase, peroxidase, and polyphenol oxidase. PevD1 also enhanced the expression of three pathogenesis-related genes, namely, beta-1,3-glucanase, chitinase, and cadinene synthase, and three key genes, PAL, C4H1, and 4CL, from the cotton defense phenylpropanoid metabolism pathway. Our results demonstrated that PevD1 acted as an effector in cotton and V. dahliae interactions and triggered innate immunity in cotton, resulting in the upregulation of defense-related genes, metabolic substance deposition and cell wall modifications. PevD1 is a candidate plant defense activator for cotton wilt disease control.

分类号:

  • 相关文献

[1]Effects of grafting on root exudates of eggplant and allelopathy of benzyl benzoate on seedling growth. Liu, N.,Zhou, B. L.,Lu, B.,Zhu, W. M..

[2]BACILLUS AMYLOLIQUEFACIENS Lx-11, A POTENTIAL BIOCONTROL AGENT AGAINST RICE BACTERIAL LEAF STREAK. Zhang, R. S.,Chen, Z. Y.,Zhang, R. S.,Liu, Y. F.,Luo, C. P.,Wang, X. Y.,Liu, Y. Z.,Qiao, J. Q.,Yu, J. J.,Chen, Z. Y.. 2012

[3]The purification and characterization of a novel hypersensitive-like response-inducing elicitor from Verticillium dahliae that induces resistance responses in tobacco. Yang, Xiufen,Zeng, Hongmei,Liu, Hua,Zhou, Tingting,Tan, Beibei,Yuan, Jingjing,Guo, Lihua,Qiu, Dewen.

[4]Comparative transcriptome profiling of genes and pathways related to resistance against powdery mildew in two contrasting melon genotypes. Zhu, Qianglong,Gao, Peng,Wan, Yan,Cui, Haonan,Fan, Chao,Liu, Shi,Luan, Feishi,Zhu, Qianglong,Gao, Peng,Wan, Yan,Cui, Haonan,Liu, Shi,Luan, Feishi,Fan, Chao. 2018

[5]Novel insights into the molecular mechanisms underlying the resistance of Camellia sinensis to Ectropis oblique provided by strategic transcriptomic comparisons. Wang, Dan,Li, Chun-Fang,Ma, Chun-Lei,Chen, Liang.

[6]Histological and Ultrastructural Observation Reveals Significant Cellular Differences between Agrobacterium Transformed Embryogenic and Non-embryogenic Calli of Cotton. Shang, Hai-Hong,Liu, Chuan-Liang,Zhang, Chao-Jun,Li, Feng-Lian,Hong, Wei-Dong,Li, Fu-Guang.

[7]A simplified pruning method for profitable cotton production in the Yellow River valley of China. Dai, Jianlong,Luo, Zhen,Li, Weijiang,Tang, Wei,Zhang, Dongmei,Lu, Hequan,Li, Zhenhuai,Xin, Chengsong,Kong, Xiangqiang,Eneji, A. Egrinya,Dong, Hezhong.

[8]Dry mycelium of Penicillium chrysogenum induces expression of pathogenesis-related protein genes and resistance against wilt diseases in Bt transgenic cotton. Chen, Suiyun,Dong, Hezhong,Fan, Yuqin,Li, Weijiang,Cohen, Yigal. 2006

[9]Effects of Soil Salinity and Plant Density on Yield and Leaf Senescence of Field-Grown Cotton. Zhang, H. J.,Dong, H. Z.,Li, W. J.,Zhang, D. M.,Zhang, H. J.. 2012

[10]Removal of early fruiting branches impacts leaf senescence and yield by altering the sink/source ratio of field-grown cotton. Chen, Yizhen,Dong, Hezhong,Chen, Yizhen,Kong, Xiangqiang,Dong, Hezhong,Kong, Xiangqiang,Dong, Hezhong. 2018

[11]An Improved CTAB-Ammonium Acetate Method for Total RNA Isolation from Cotton. Ding, Qi,Zeng, Jun,He, Xin-Qiang,Zhao, Lu,Fan, Shou-Jin,Wang, Fu-Rong,Zhang, Jun. 2012

[12]Yield, quality and leaf senescence of cotton grown at varying planting dates and plant densities in the Yellow River Valley of China. Dong, HZ,Li, WJ,Tang, W,Li, ZH,Zhang, DM,Niu, YH. 2006

[13]Dry mycelium of Penicillium chrysogenum protects cotton plants against wilt diseases and increases yield under field conditions. Dong, HZ,Zhang, XK,Choen, Y,Zhou, Y,Li, WJ,Li, ZH. 2006

[14]Lint yield and nitrogen use efficiency of field-grown cotton vary with soil salinity and nitrogen application rate. Zhang, Dongmei,Li, Weijiang,Xin, Chengsong,Tang, Wei,Eneji, A. Egrinya,Dong, Hezhong,Eneji, A. Egrinya. 2012

[15]IMPROVED NUTRIENT UPTAKE ENHANCES COTTON GROWTH AND SALINITY TOLERANCE IN SALINE MEDIA. Dai, J. L.,Duan, L. S.,Dong, H. Z.,Dai, J. L.. 2014

[16]Unequal salt distribution in the root zone increases growth and yield of cotton. Dong, Hehzong,Kong, Xianggiang,Luo, Zhen,Li, Weijiang,Xin, Chengsong. 2010

[17]Genetic improvement of cotton tolerance to salinity stress. Ma, Xinrong,Dong, Hezhong,Li, Weijiang,Ma, Xinrong. 2011

[18]Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility. Dong, Hezhong,Kong, Xiangqiang,Li, Weijiang,Tang, Wei,Zhang, Dongmei. 2010

[19]Effects of non-uniform root zone salinity on water use, Na+ recirculation, and Na+ and H+ flux in cotton. Kong, Xiangqiang,Luo, Zhen,Dong, Hezhong,Eneji, A. Egrinya,Li, Weijiang,Eneji, A. Egrinya. 2012

[20]Effects of cotton rootstock on endogenous cytokinins and abscisic acid in xylem sap and leaves in relation to leaf senescence. Dong, Hezhong,Li, Weijiang,Zhang, Dongmei,Dong, Hezhong,Niu, Yuehua. 2008

作者其他论文 更多>>