Plant-mediated RNAi of a gap gene-enhanced tobacco tolerance against the Myzus persicae

文献类型: 外文期刊

第一作者: Mao, Jianjun

作者: Mao, Jianjun;Zeng, Fanrong

作者机构:

关键词: RNAi;hunchback;Myzus persicae;Transgenic tobacco

期刊名称:TRANSGENIC RESEARCH ( 影响因子:2.788; 五年影响因子:2.377 )

ISSN: 0962-8819

年卷期: 2014 年 23 卷 1 期

页码:

收录情况: SCI

摘要: Plant-mediated RNAi has been developed as a powerful weapon in the fight against agricultural insect pests. The gap gene hunchback (hb) is of crucial importance in insect axial patterning and knockdown of hb is deforming and lethal to the next generation. The peach potato aphid, Myzus persicae (Sulzer), has many host plants and can be found throughout the world. To investigate the effect of plant-mediated RNAi on control of this insect, the hb gene in M. persicae was cloned, plant RNAi vector was constructed, and transgenic tobacco expressing Mphb dsRNA was developed. Transgenic tobacco had a different integration pattern of the transgene. Bioassays were performed by applying neonate aphids to homozygous transgenic plants in the T2 generation. Results revealed that continuous feeding of transgenic diet reduced Mphb mRNA level in the fed aphids and inhibited insect reproduction, indicating successful knockdown of the target gene in M. persicae by plant-mediated RNAi.

分类号:

  • 相关文献

[1]Hunchback IS REQUIRED FOR ABDOMINAL IDENTITY SUPPRESSION AND GERMBAND GROWTH IN THE PARTHENOGENETIC EMBRYOGENESIS OF THE PEA APHID, Acyrthosiphon pisum. Liu, Changyan,Zeng, Fanrong.

[2]Suitability of various prey types for the development of Propylea japonica (Coleoptera : Coccinellidae). Zhang, Shi-Ze,Zhang, Fan,Hua, Bao-Zhen. 2007

[3]Transcriptome Analysis of Green Peach Aphid (Myzus persicae): Insight into Developmental Regulation and Inter-Species Divergence. Fang, Jichao,Ji, Rui,Zhu-Salzman, Keyan,Wang, Yujun,Cheng, Yanbin,Zhang, Meiping,Zhang, Hong-Bin,Zhu, Li. 2016

[4]E-beta-farnesene synergizes the influence of an insecticide to improve control of cabbage aphids in China. Dong, Jie,Liu, Ying-Jie,Liu, Yong,Heuskin, Stephanie,Lognay, Georges,Chen, Ju-Lian,Bragard, Claude,Tooker, John F.. 2012

[5]Immunolocalization of Odorant-Binding Proteins on Antennal Chemosensilla of the Peach Aphid Myzus persicae (Sulzer). Zhao, Li-Jing,Sun, Lei,Zhang, Shan-Gan,Ban, Li-Ping.

[6]Interactions of elevated carbon dioxide and temperature with aphid feeding on transgenic oilseed rape: Are Bacillus thuringiensis (Bt) plants more susceptible to nontarget herbivores in future climate?. Himanen, Sari J.,Nissinen, Anne,Nerg, Anne-Marja,Holopainen, Jarmo K.,Nissinen, Anne,Dong, Wen-Xia,Stewart, C. Neal, Jr.,Poppy, Guy M..

[7]Pre-infestation of Tomato Plants by Aphids Modulates Transmission-Acquisition Relationship among Whiteflies, Tomato Yellow Leaf Curl Virus (TYLCV) and Plants. Ge, Feng,Tan, Xiao L.,Chen, Ju L.,Tan, Xiao L.,Liu, Tong X.,Tan, Xiao L.,Liu, Tong X.,Benelli, Giovanni,Desneux, Nicolas,Yang, Xue Q.. 2017

[8]Effects of aphids Myzus persicae on the changes of Ca2+ and H2O2 flux and enzyme activities in tobacco. Ren, Guangwei,Liu, Xiangdong,Ren, Guangwei,Wang, Xiufang,Chen, Dan,Wang, Xinwei. 2014

[9]Expressing an (E)-beta-farnesene synthase in the chloroplast of tobacco affects the preference of green peach aphid and its parasitoid. Wang, Gen-Ping,Wang, Cheng-She,Xia, Lan-Qin,Wang, Gen-Ping,Yu, Xiu-Dao,Yu, Xiu-Dao,Fan, Jia. 2015

[10]The terpene synthase gene family in Gossypium hirsutum harbors a linalool synthase GhTPS12 implicated in direct defence responses against herbivores. Xiao, Yu-Tao,Jing, Wei-Xia,Kou, Jun-Feng,Liu, Dan-Feng,Gu, Shao-Hua,Zhang, Yong-Jun,Guo, Yu-Yuan,Xiao, Yu-Tao,Koellner, Tobias G.,Chen, Jie-Yin,Wu, Jun-Xiang. 2018

[11]Aphid performance changes with plant defense mediated by Cucumber mosaic virus titer. Gao, Yang,Yan, Shuo,Tang, Xin,Zhang, Deyong,Liu, Yong,Zhang, Deyong,Liu, Yong,Zhou, Xuguo. 2016

[12]Impact of aphid alarm pheromone release on virus transmission efficiency: When pest control strategy could induce higher virus dispersion. Liu, Ying-Jie,Liu, Yong,Lin, Fang-Jing,Bosquee, Emilie,Francis, Frederic,Chen, Ju-Lian.

[13]Overexpression of CaHSP26 in transgenic tobacco alleviates photoinhibition of PSII and PSI during chilling stress under low irradiance. Guo, Shang-Jing,Zhou, Hai-Yan,Zhang, Xian-Sheng,Li, Xin-Guo,Meng, Qing-Wei. 2007

[14]Overexpression of a tomato flavanone 3-hydroxylase-like protein gene improves chilling tolerance in tobacco. Zhang, Song,Wang, Guo-Dong,Kong, Fan-Ying,Meng, Chen,Deng, Yong-Sheng.

[15]Identification and differential expression of two isogenes encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase in Glycine max. Zhang, Man,Li, Kai,Liu, Jianyu,Yu, Deyue,Zhang, Man. 2012

[16]A Cu/Zn superoxide dismutase gene from Saussurea involucrata Kar. & Kir., SiCSD, enhances drought, cold, and oxidative stress in transgenic tobacco. Zhang, L.,Sun, L.,Zhang, L.,Qiu, H.,Liu, C.,Wang, A.,Zhu, J.,Deng, F.. 2017

[17]Combinational transformation of three wheat genes encoding fructan biosynthesis enzymes confers increased fructan content and tolerance to abiotic stresses in tobacco. Bie, Xiaomin,Wang, Ke,She, Maoyun,Du, Lipu,Zhang, Shuangxi,Gao, Xiang,Lin, Zhishan,Ye, Xingguo,Bie, Xiaomin,Zhang, Shuangxi,Li, Jiarui. 2012

[18]Expression of a wheat MYB gene in transgenic tobacco enhances resistance to Ralstonia solanacearum, and to drought and salt stresses. Liu, Hongxia,Zhou, Xianyao,Dong, Na,Liu, Xin,Zhang, Zengyan,Zhou, Xianyao,Zhang, Huaiyu.

[19]Transgenic tobacco expressing an Arisaema heterophyllum agglutinin gene displays enhanced resistance to aphids. Yao, JH,Zhao, XY,Qi, HX,Wan, BL,Chen, F,Sun, XF,Yu, SQ,Tang, KX. 2004

[20]Transcriptional Modulation of Ethylene Response Factor Protein JERF3 in the Oxidative Stress Response Enhances Tolerance of Tobacco Seedlings to Salt, Drought, and Freezing. Wu, Lijun,Zhang, Zhijin,Zhang, Haiwen,Huang, Rongfeng,Wu, Lijun,Wang, Xue-Chen,Wu, Lijun,Zhang, Zhijin,Zhang, Haiwen,Huang, Rongfeng,Wu, Lijun,Zhang, Zhijin,Zhang, Haiwen,Huang, Rongfeng.

作者其他论文 更多>>