Basic Soil Productivity of Spring Maize in Black Soil Under Long-Term Fertilization Based on DSSAT Model

文献类型: 外文期刊

第一作者: Zha Yan

作者: Zha Yan;Wu Xue-ping;He Xin-hua;Zhang Hui-min;Gong Fu-fei;Cai Dian-xiong;He Xin-hua;Zhu Ping;Gao Hong-jun

作者机构:

关键词: spring maize;long-term fertilization;basic soil productivity;black soil;DSSAT model

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2014 年 13 卷 3 期

页码:

收录情况: SCI

摘要: Increasing basic farmland soil productivity has significance in reducing fertilizer application and maintaining high yield of crops. In this study, we defined that the basic soil productivity (BSP) is the production capacity of a farmland soil with its own physical and chemical properties for a specific crop season under local environment and field management. Based on 22-yr (1990-2011) long-term experimental data on black soil (Typic hapludoll) in Gongzhuling, Jilin Province, Northeast China, the decision support system for an agro-technology transfer (DSSAT)-CERES-Maize model was applied to simulate the yield by BSP of spring maize (Zea mays L.) to examine the effects of long-term fertilization on changes of BSP and explore the mechanisms of BSP increasing. Five treatments were examined: (1) no-fertilization control (control); (2) chemical nitrogen, phosphorus, and potassium (NPK); (3) NPK plus farmyard manure (NPKM); (4) 1.5 time of NPKM (1.5NPKM) and (5) NPK plus straw (NPKS). Results showed that after 22-yr fertilization, the yield by BSP of spring maize significantly increased 78.0, 101.2, and 69.4% under the NPKM, 1.5NPKM and NPKS, respectively, compared to the initial value (in 1992), but not significant under NPK (26.9% increase) and the control (8.9% decrease). The contribution percentage of BSP showed a significant rising trend (P<0.05) under 1.5NPKM. The average contribution percentage of BSP among fertilizations ranged from 74.4 to 84.7%, and ranked as 1.5NPKM>NPKM>NPI approximate to NPKS, indicating that organic manure combined with chemical fertilizers (1.5NPKM and NPKM) could more effectively increase BSP compared with the inorganic fertilizer application alone (NPK) in the black soil. This study showed that soil organic matter (SOM) was the key factor among various fertility factors that could affect BSP in the black soil, and total N, total P and/or available P also played important role in BSP increasing. Compared with the chemical fertilization, a balanced chemical plus manure or straw fertilization (NPKM or NPKS) not only increased the concentrations of soil nutrient, but also improved the soil physical properties, and structure and diversity of soil microbial population, resulting in an iincrease of BSP. We recommend that a balanced chemical plus manure or straw fertilization (NPKM or NPKS) should be the fertilization practices to enhance spring maize yield and improve BSP in the black soil of Northeast China.

分类号:

  • 相关文献

[1]Long-term organic and inorganic fertilizations enhanced basic soil productivity in a fluvo-aquic soil. Zha Yan,Wu Xue-ping,Gong Fu-fei,Xu Ming-gang,Zhang Hui-min,Cai Dian-xiong,Chen Li-ming,Huang Shao-min. 2015

[2]Influence of inorganic fertilizer and organic manure application on fungal communities in a long-term field experiment of Chinese Mollisols. Ding, Jianli,Jiang, Xin,Guan, Dawei,Ma, Mingchao,Cao, Fengming,Li, Li,Li, Jun,Ding, Jianli,Jiang, Xin,Zhao, Baisuo,Ma, Mingchao,Cao, Fengming,Yang, Xiaohong,Li, Jun,Zhou, Baoku.

[3]Effect of Long-Term Fertilization on Organic Nitrogen Functional Groups in Black Soil as Revealed by Synchrotron-Based X-Ray Absorption Near-Edge Structure Spectroscopy. Gao Qiang,Zhang Jin-jing,Li Hui,Wang Shuai,Zhu Ping,Zhao Yi-dong. 2015

[4]Effect of 15-Year-Long Fertilization on Potassium Quantity/Intensity Relationships in Black Soil in Northeastern China. Zhang, Huimin,Xu, Minggang,Zhu, Ping,Peng, Chang. 2011

[5]Soil Organic Carbon Accumulation Increases Percentage of Soil Olsen-P to Total P at Two 15-Year Mono-Cropping Systems in Northern China. Shen Pu,He Xin-hua,Xu Ming-gang,Zhang Hui-min,He Xin-hua,Peng Chang,Gao Hong-jun,Liu Hua,Xu Yong-mei,Qin Song,Xiao Hou-jun. 2014

[6]Using DSSAT Model to assess spring wheat and maize water use in the arid oasis of Northwest China. Wang, Shufen,Li, Huilong,Yang, Yonghui,Yang, Yanmin,Wang, Shufen,Wang, Shufen,Li, Huilong,Wang, Huijun,Jia, Yongguo. 2012

[7]Effect of 35 years inorganic fertilizer and manure amendment on structure of bacterial and archaeal communities in black soil of northeast China. Ding, Jianli,Jiang, Xin,Ma, Mingchao,Guan, Dawei,Zhou, Jing,Cao, Fengming,Li, Li,Li, Jun,Jiang, Xin,Ma, Mingchao,Cao, Fengming,Li, Jun,Zhou, Baoku,Zhao, Baisuo.

[8]Ureolytic microbial community is modulated by fertilization regimes and particle-size fractions in a Black soil of Northeastern China. Wang, Li,Luo, Xuesong,Liao, Hao,Chen, Wen,Cai, Peng,Huang, Qiaoyun,Wang, Li,Luo, Xuesong,Cai, Peng,Huang, Qiaoyun,Wei, Dan. 2018

[9]Bacterial community structure and diversity in a black soil as affected by long-term fertilization. Wei Dan,Yang Qian,Zhang Jun-Zheng,Wang Shuang,Wei Dan,Yang Qian,Chen Xue-Li,Zhang Xi-Lin,Li Wei-Qun.

[10]Impact of long-term continuous soybean cropping on ammonia oxidizing bacteria communities in the rhizosphere of soybean in Northeast China. Chen, Xueli,Han, Xiaozeng,Chen, Xueli,Wang, Yufeng,Li, Weiqun,Wang, Ying,Wei, Dan,Wang, Xiaojun,Chen, Xueli.

[11]Soil microbial properties of black soil under long-term fertilisation. Wei, Dan,Zhou, Baoku,Ma, Xingzhu,Chen, Xueli,Zhang, Junzheng.

[12]Fluorescence Spectroscopic Characteristics of Fulvic Acid from the Long-Term Located Fertilization in Black Soil. Li Yan-ping,Zhao Yue,Wei Zi-min,Li Shu-ling,Wei Dan,Zhou Bao-ku,Zhang Xi-lin. 2011

[13]The efficiency of long-term straw return to sequester organic carbon in Northeast China's cropland. Wang Shi-chao,Zhao Ya-wen,Wang Jin-zhou,Xu Ming-gang,Lu Chang-ai,Zhu Ping,Cui Xian,Han Xiao-zeng. 2018

[14]Effects of Soil pH on CO2 Emission from Long-Term Fertilized Black Soils in Northeastern China. Wang, Lianfeng,Han, Zuoqiang,Zhang, Xilin,Wang, Lianfeng. 2010

[15]Denitrification potential under different fertilization regimes is closely coupled with changes in the denitrifying community in a black soil. Yin, Chang,Fan, Fenliang,Song, Alin,Cui, Peiyuan,Liang, Yongchao,Li, Tingqiang,Liang, Yongchao.

[16]Soil carbon dioxide emission from intensively cultivated black soil in Northeast China: nitrogen fertilization effect. Ni, Kang,Ding, Weixin,Cai, Zucong,Ni, Kang,Wang, Yufeng,Zhang, Xilin,Zhou, Baoku. 2012

[17]Nitrous Oxide Flux from Long-term Fertilized Black Soils in A Snowfall Process. Wang Lianfeng,Han Zuoqiang,Sun Xin,Zhang Xilin,Wang Lianfeng,Cai Yanjiang. 2010

[18]Spatio-temporal dynamics of maize cropping system in Northeast China between 1980 and 2010 by using spatial production allocation model. Tan Jieyang,Yang Peng,Wu Wenbin,Zhang Li,Li Zhipeng,Tang Huajun,Li Zhengguo,Liu Zhenhuan,You Liangzhi. 2014

[19]Carbon exchange of a rainfed spring maize cropland under plastic film mulching with straw returning on the Loess Plateau, China. Gao, Xiang,Gu, Fengxue,Mei, Xurong,Hao, Weiping,Li, Haoru,Gong, Daozhi.

[20]Screen for sustainable cropping systems in the rain-fed area on the Loess Plateau of China. Yao, Zhiyuan,Wang, Zheng,Li, Jing,Zhai, Bingnian,Wang, Zhaohui,Gao, Yajun,Bedoussac, Laurent,Zhang, Suiqi,Li, Yangyang,Cao, Weidong,Gao, Yajun. 2018

作者其他论文 更多>>