A 1,681-locus consensus genetic map of cultivated cucumber including 67 NB-LRR resistance gene homolog and ten gene loci

文献类型: 外文期刊

第一作者: Yang, Luming

作者: Yang, Luming;Li, Dawei;Li, Yuhong;Weng, Yiqun;Li, Dawei;Li, Yuhong;Gu, Xingfang;Huang, Sanwen;Garcia-Mas, Jordi;Weng, Yiqun

作者机构:

关键词: Cucumber;Cucumis sativus;NB-LRR;Resistance gene homolog;Genetic mapping;Comparative mapping;Map integration

期刊名称:BMC PLANT BIOLOGY ( 影响因子:4.215; 五年影响因子:4.96 )

ISSN: 1471-2229

年卷期: 2013 年 13 卷

页码:

收录情况: SCI

摘要: Background: Cucumber is an important vegetable crop that is susceptible to many pathogens, but no disease resistance (R) genes have been cloned. The availability of whole genome sequences provides an excellent opportunity for systematic identification and characterization of the nucleotide binding and leucine-rich repeat (NB-LRR) type R gene homolog (RGH) sequences in the genome. Cucumber has a very narrow genetic base making it difficult to construct high-density genetic maps. Development of a consensus map by synthesizing information from multiple segregating populations is a method of choice to increase marker density. As such, the objectives of the present study were to identify and characterize NB-LRR type RGHs, and to develop a high-density, integrated cucumber genetic-physical map anchored with RGH loci. Results: From the Gy14 draft genome, 70 NB-containing RGHs were identified and characterized. Most RGHs were in clusters with uneven distribution across seven chromosomes. In silico analysis indicated that all 70 RGHs had EST support for gene expression. Phylogenetic analysis classified 58 RGHs into two clades: CNL and TNL. Comparative analysis revealed high-degree sequence homology and synteny in chromosomal locations of these RGH members between the cucumber and melon genomes. Fifty-four molecular markers were developed to delimit 67 of the 70 RGHs, which were integrated into a genetic map through linkage analysis. A 1,681-locus cucumber consensus map including 10 gene loci and spanning 730.0 cM in seven linkage groups was developed by integrating three component maps with a bin-mapping strategy. Physically, 308 scaffolds with 193.2 Mbp total DNA sequences were anchored onto this consensus map that covered 52.6% of the 367 Mbp cucumber genome. Conclusions: Cucumber contains relatively few NB-LRR RGHs that are clustered and unevenly distributed in the genome. All RGHs seem to be transcribed and shared significant sequence homology and synteny with the melon genome suggesting conservation of these RGHs in the Cucumis lineage. The 1,681-locus consensus genetic-physical map developed and the RGHs identified and characterized herein are valuable genomics resources that may have many applications such as quantitative trait loci identification, map-based gene cloning, association mapping, marker-assisted selection, as well as assembly of a more complete cucumber genome.

分类号:

  • 相关文献

[1]Syntenic relationships between cucumber (Cucumis sativus L.) and melon (C. melo L.) chromosomes as revealed by comparative genetic mapping. Li, Dawei,Cuevas, Hugo E.,Yang, Luming,Li, Yuhong,Zalapa, Juan,He, Xiaoming,Weng, Yiqun,Li, Dawei,Li, Yuhong,Gong, Zhenhui,Cuevas, Hugo E.,Garcia-Mas, Jordi,Zalapa, Juan,Weng, Yiqun,Staub, Jack E.,Luan, Feishi,Reddy, Umesh,He, Xiaoming. 2011

[2]Brassinosteroids are involved in response of cucumber (Cucumis sativus) to iron deficiency. Wang, Baolan,Zhang, Wen-Hao,Li, Yansu. 2012

[3]The wheat NB-LRR gene TaRCR1 is required for host defence response to the necrotrophic fungal pathogen Rhizoctonia cerealis. Zhu, Xiuliang,Du, Lipu,Ye, Xingguo,Liu, Xin,Zhang, Zengyan,Lu, Chungui,Coules, Anne.

[4]A High-Density Consensus Map of Common Wheat Integrating Four Mapping Populations Scanned by the 90K SNP Array. Wen, Weie,Qu, Yanying,Wen, Weie,He, Zhonghu,Liu, Jindong,Jin, Hui,Zhai, Shengnan,Xia, Xianchun,He, Zhonghu,Gao, Fengmei. 2017

[5]Meta-analysis of constitutive QTLs for disease resistance in maize and its synteny conservation in the rice genome. Zhao, L.,Wang, Q. Y.,Liu, H. J.,Zhang, C. X.,Li, X. H.. 2015

[6]A genetic linkage map and comparative genome analysis of common carp (Cyprinus carpio L.) using microsatellites and SNPs. Zheng, Xianhu,Kuang, Youyi,Zhang, Xiaofeng,Lu, Cuiyun,Cao, Dingchen,Li, Chao,Sun, Xiaowen,Zheng, Xianhu. 2011

[7]Quantitative trait loci analysis and genome-wide comparison for silique related traits in Brassica napus. Wang, Xiaodong,Chen, Li,Chao, Hongbo,Li, Maoteng,Wang, Xiaodong,Chen, Li,Xiang, Jun,Gan, Jianping,Wang, Aina,Wang, Hao,Tian, Jianhua,Zhao, Xiaoping,Zhao, Yajun,Zhao, Weiguo. 2016

[8]Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa. Lou, Ping,Zhao, Jianjun,Del Carpio, Dunia Pino,Bonnema, Guusje,Zhao, Jianjun,Shen, Shuxing,Song, Xiaofei,Zhao, Jianjun,Wang, Xiaowu,Kim, Jung Sun,Jin, Mina,Zhao, Jianjun,Koornneef, Maarten,Zhao, Jianjun,Vreugdenhil, Dick,Koornneef, Maarten. 2007

[9]A Consensus Linkage Map Provides Insights on Genome Character and Evolution in Common Carp (Cyprinus carpio L.). Zhang, Xiaofeng,Zheng, Xianhu,Kuang, Youyi,Li, Chao,Cao, Dingchen,Lu, Cuiyun,Sun, Xiaowen,Zhang, Yan,Zhao, Zixia,Zhao, Lan,Jiang, Li,Xu, Peng. 2013

[10]Genetic mapping and QTL analysis for body weight in Jian carp (Cyprinus carpio var. Jian) compared with mirror carp (Cyprinus carpio L.). Gu Ying,Lu Cuiyun,Zhang Xiaofeng,Li Chao,Sun Xiaowen,Lu Cuiyun,Yu Juhua. 2015

[11]GA-20 oxidase as a candidate for the semidwarf gene sdw1/denso in barley. Jia, Qiaojun,Jia, Qiaojun,Westcott, Sharon,Lance, Reg,Li, Chengdao,Zhang, Jingjuan,Westcott, Sharon,Zhang, Xiao-Qi,Li, Chengdao,Bellgard, Mathew. 2009

[12]Genetic linkage map of Lolium multiflorum Lam. constructed from a BC1 population derived from an interspecific hybridization, L. multiflorum x Lolium temulentum L. x L. temulentum. Guan, Xuanli,Tan, Lubin,Fu, Yongcai,Cai, Hongwei,Guan, Xuanli,Tan, Lubin,Fu, Yongcai,Cai, Hongwei,Hirata, Mariko,Yuyama, Nana,Cai, Hongwei,Ding, Chenglong,Xu, Nengxiang,Tan, Lubin,Wang, Jianping.

[13]Short- and long-term effects of ultra-drying on germination and growth of vegetable seeds. Shen, D,Qi, XQ. 1998

[14]The expression patterns of Cucumis sativus WRKY (CsWRKY) family under the condition of inoculation with Phytophthora melonis in disease resistant and susceptible cucumber cultivars. Xu, Xiaomei,Wang, Rui,Chao, Juan,Lin, Yu'e,Jin, Qingmin,He, Xiaoming,Luo, Shaobo,Wu, Tingquan,Xu, Xiaomei,Wang, Rui,Chao, Juan,Lin, Yu'e,Jin, Qingmin,He, Xiaoming,Luo, Shaobo,Wu, Tingquan. 2015

[15]beta-tubulin accumulation and DNA synthesis are sequentially resumed in embryo organs of cucumber (Cucumis sativus L.) seeds during germination. Jing, HC,van Lammeren, AAM,de Castro, RD,Bino, RJ,Hilhorst, HWM,Groot, SPC. 1999

[16]Inheritance and QTL mapping of resistance to gummy stem blight in cucumber stem. Zhang, Shengping,Liu, Shulin,Miao, Han,Shi, Yanxia,Wang, Min,Wang, Ye,Li, Baoju,Gu, Xingfang.

[17]Allelopathic effects of Hemistepta lyrata on the germination and growth of wheat, sorghum, cucumber, rape, and radish seeds. Gao, Xingxiang,Li, Mei,Gao, Zongjun,Li, Changsong,Sun, Zuowen.

[18]Impact of arbuscular mycorrhizal fungi (AMF) on cucumber growth and phosphorus uptake under cold stress. Ma, Jun,Zou, Zhirong,Ma, Jun,Li, Yansu,Yu, Xianchang,Yan, Yan,He, Chaoxing,Janouskova, Martina.

[19]Proteome-level investigation of Cucumis sativus-derived resistance to Sphaerotheca fuliginea. Fan, Haiyan,Ren, Liping,Meng, Xiangnan,Yu, Yang,Fan, Haiyan,Song, Tiefeng,Meng, Kexin.

[20]Glutathione-dependent induction of local and systemic defense against oxidative stress by exogenous melatonin in cucumber (Cucumis sativus L.). Li, Hao,He, Jie,Yang, Xiaozhen,Luo, Dan,Wei, Chunhua,Ma, Jianxiang,Zhang, Yong,Yang, Jianqiang,Zhang, Xian,Li, Xin. 2016

作者其他论文 更多>>