Influence of Garlic Intercropping or Active Emitted Volatiles in Releasers on Aphid and Related Beneficial in Wheat Fields in China

文献类型: 外文期刊

第一作者: Chen Ju-lian

作者: Chen Ju-lian;Sun Jing-rui;Cheng Deng-fa;Zhou Hai-bo;Francis, Frederic;Haubruge, Eric;Liu Yong;Bragard, Claude

作者机构:

关键词: wheat;garlic;intercropping;semiochemical release;Sitobion avenae;natural enemies

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2013 年 12 卷 3 期

页码:

收录情况: SCI

摘要: In order to develop biological control of aphids by a "push-pull" approach, intercropping using repellent emitting plants was developed in different crop and associated plant models. Garlic is one of the potential plant that could be inserted in crops to decrease the pest occurrence in neighboring crop plots. In this study, field works were conducted in wheat fields in Langfang Experimental Station, Hebei Province in China from October 2009 to July 2010 during wheat developmental season. The effect of wheat intercropping with garlic but also the volatiles emission on the incidence of the English grain aphid, Sitobion avenae Fabricius (Homoptera: Aphididae) was assessed. Natural beneficial occurrence and global yields in two winter wheat varieties that were susceptible or resistant to cereal aphid were also determined comparing to control plots without the use of garlic plant intercrop nor semiochemical releaser in the fields. S. avenae was found to be lower in garlic oil blend treatment (GOB), diallyl disulfide treatment (DD) and wheat-garlic intercropping treatment (WGI) when compared to the control plots for both two varieties (P<0.01). Both intercropping and application of volatile chemicals emitted by garlic could improve the population densities of natural enemies of cereal aphid, including ladybeetles and mummified aphids. Ladybeetle population density in WGI, GOB and mummified aphids densities in WGI, DD were significantly higher than those in control fields for both two varieties (P<0.05). There were significant interactions between cultivars and treatments to the population densities of S. avenae. The 1000-grain weight and yield of wheat were also increased compared to the control. Due to their potential alternatives as a biological control agent against cereal aphid, garlic intercropping and related emitted volatiles are expected to contribute to the further improvement of integrated pest management systems and to potentially reduce the amount of traditional synthetic pesticides applied in wheat fields.

分类号:

  • 相关文献

[1]Adaptation of Wheat-Pea Intercropping Pattern in China to Reduce Sitobion avenae (Hemiptera: Aphididae) Occurrence by Promoting Natural Enemies. Chen, Julian,Cheng, Dengfa,Zhou, Haibo,Chen, Lin,Francis, Frederic,Haubruge, Eric,Liu, Yong,Bragard, Claude.

[2]Impact of Wheat-Mung Bean Intercropping on English Grain Aphid (Hemiptera: Aphididae) Populations and Its Natural Enemy. Chen, Ju-Lian,Cheng, Deng-Fa,Zhou, Hai-Bo,Sun, Jing-Rui,Liu, Yong,Francis, Frederic. 2012

[3]Discovery of English grain aphid (Hemiptera: Aphididae) biotypes in China. Chen, Ju-Lian,Cheng, Deng-Fa,Sun, Jing-Rui,Xu, Zhao-Huan,Liu, Yong,Francis, Frederic.

[4]Competitive interaction in a jujube tree/wheat agroforestry system in northwest China's Xinjiang Province. Zhang, W.,Wang, B. J.,Gan, Y. W.,Duan, Z. P.,Hao, X. D.,Lv, X.,Li, L. H.,Xu, W. L.. 2017

[5]Intercropping influenced the occurrence of stripe rust and powdery mildew in wheat. Luo, Huisheng,Jin, Ming'an,Jin, Shelin,Jia, Qiuzhen,Zhang, Bo,Huang, Jin,Wang, Xiaoming,Sun, Zhenyu,Shang, Xunwu,Cao, Shiqin,Duan, Xiayu,Zhou, Yilin,Chen, Wanquan,Liu, Taiguo.

[6]Intercropping with wheat leads to greater root weight density and larger below-ground space of irrigated maize at late growth stages. Li, Long,Li, Long,Zhang, Fusuo,Sun, Jianhao. 2011

[7]Effects of intercropping and nitrogen application on nitrate present in the profile of an Orthic Anthrosol in Northwest China. Li, WX,Li, L,Sun, JH,Guo, TW,Zhang, FS,Bao, XG,Peng, A,Tang, C. 2005

[8]Effects of nitrogen and phosphorus fertilizers and intercropping on uptake of nitrogen and phosphorus by wheat, maize, and faba bean. Li, WX,Li, L,Sun, JH,Zhang, FS,Christie, P. 2003

[9]Wheat/maize or wheat/soybean strip intercropping I. Yield advantage and interspecific interactions on nutrients. Li, L,Sun, JH,Zhang, FS,Li, XL,Yang, SC,Rengel, Z. 2001

[10]Arbuscular mycorrhizal fungi contribute to overyielding by enhancing crop biomass while suppressing weed biomass in intercropping systems. Qiao, Xu,Bei, ShuiKuan,Li, HaiGang,Christie, Peter,Zhang, FuSuo,Zhang, JunLing,Qiao, Xu,Bei, ShuiKuan,Li, HaiGang,Christie, Peter,Zhang, FuSuo,Zhang, JunLing,Qiao, Xu,Qiao, Xu,Zhang, JunLing.

[11]Interspecific interactions alter root length density, root diameter and specific root length in jujube/wheat agroforestry systems. Wang, B. J.,Zhang, W.,Ahanbieke, P.,Gan, Y. W.,Li, L. H.,Zhang, W.,Christie, P.,Li, L.,Xu, W. L..

[12]Root distribution and interactions in jujube tree/wheat agroforestry system. Zhang, W.,Christie, P.,Li, L.,Zhang, W.,Ahanbieke, P.,Wang, B. J.,Li, L. H.,Xu, W. L.,Christie, P..

[13]Bacterial symbionts, Buchnera, and starvation on wing dimorphism in English grain aphid, Sitobion avenae (F.) (Homoptera: Aphididae). Li, Xiangrui,Zhang, Yunhui,Cheng, Dengfa,Coates, Brad,Zhou, Xuguo Joe. 2015

[14]The complete mitochondrial genome of Sitobion avenae (Hemiptera: Aphididae). Zhang, Bo,Zheng, Jincheng,Liang, Lina,Ma, Chun-Sen,Fuller, Susan. 2016

[15]Variation in the transmission of barley yellow dwarf virus-PAV by different Sitobion avenae clones in China. Yu, Wenjuan,Cheng, Dengfa,Chen, Julian,Yu, Wenjuan,Francis, Frederic,Xu, Zhaohuan,Bragard, Claude,Liu, Yong. 2013

[16]Watery Saliva Secreted by the Grain Aphid Sitobion avenae Stimulates Aphid Resistance in Wheat. Zhang, Yong,Fan, Jia,Chen, Julian,Zhang, Yong,Francis, Frederic. 2017

[17]Evaluation of extraction procedures for 2-DE analysis of aphid proteins. An Shaoli,Wang Tao,Fang Kui,Zhang Hua,Sun Yu,Yang Xun,Xi Jinghui,Li Kebin.

[18]Effects of cycloxaprid, a novel cis-nitromethylene neonicotinoid insecticide, on the feeding behaviour of Sitobion avenae. Sun, Lina,Yang, Daibin,Yan, Xiaojing,Yuan, Huizhu.

[19]Detoxification of gramine by the cereal aphid Sitobion avenae. Cai, Qing-Nian,Han, Ying,Hu, Yuan,Zhao, Xin,Cao, Ya-Zhong.

[20]Climate warming may increase aphids' dropping probabilities in response to high temperatures. Ma, Chun-Sen.

作者其他论文 更多>>