The dissection and SSR mapping of a high-temperature adult-plant stripe rust resistance gene in American spring wheat cultivar Alturas

文献类型: 外文期刊

第一作者: Zhang, Chun-Yu

作者: Zhang, Chun-Yu;Xu, Xiao-Dan;Sun, Quan;Miao, Qing;Lin, Feng;Feng, Jing;Xu, Shi-Chang;Chen, Xian-Ming;Chen, Xian-Ming

作者机构:

关键词: Wheat;SSR mapping;Resistance gene;Stripe rust

期刊名称:EUROPEAN JOURNAL OF PLANT PATHOLOGY ( 影响因子:1.907; 五年影响因子:2.022 )

ISSN: 0929-1873

年卷期: 2012 年 134 卷 2 期

页码:

收录情况: SCI

摘要: Stripe rust is one of major diseases in wheat production worldwide. The best economic and efficient method is to utilize resistant varieties. Alturas has high-temperature adult-plant resistance. In order to determine stripe rust resistance characteristics, resistance gene combination and molecular map of the resistance gene(s), Alturas was crossed with Chinese susceptible cultivar Taichung29. The parents, F-1, F-2 progenies were tested with Chinese predominant mixed races CYR31, CYR32 and CYR33 in field experiments in 2010 and F-3 progenies were evaluated at one site in Beijing, the other site in Langfang, Hebei Province. Infection type (IT) and disease severity (DS) were recorded three times for each plant for F-1 and F-2, and each progeny for F-3 during each growing season. The DS data were used to calculate relative area under the disease progress curve (AUDPC) values. Both IT and AUDPC data showed continuous distributions, indicating that the Alturas HTAP resistance was controlled by quantitative trait loci (QTLs). A major HTAP QTL, designated as QYrAlt.syau-3BS, was consistently detected across environments and was located on chromosome 3BS. The gene contributed to 34.28 % of the phenotypic variation for average AUDPC and 50.20 % for average IT. Markers Xgwm389 and Xbarc238 flanking the major QTL, should be useful in breeding for obtaining durable and high-level resistance by combinations with other non-race-specific resistance genes.

分类号:

  • 相关文献

[1]Molecular Characterization of a New Wheat-Thinopyrum intermedium Translocation Line with Resistance to Powdery Mildew and Stripe Rust. Zhan, Haixian,Li, Guangrong,Pan, Zhihui,Yang, Zujun,Zhan, Haixian,Zhang, Xiaojun,Hu, Jin,Li, Xin,Qiao, Linyi,Guo, Huijuan,Chang, Zhijian,Jia, Juqing,Chang, Zhijian. 2015

[2]TaNAC1 acts as a negative regulator of stripe rust resistance in wheat, enhances susceptibility to Pseudomonas syringae, and promotes lateral root development in transgenic Arabidopsis thaliana. Lin, Ruiming,Feng, Jing,Chen, Wanquan,Qiu, Dewen,Xu, Shichang. 2015

[3]Molecular tagging of the yellow rust resistance gene Yr10 in common wheat, PI178383 (Triticum aestivum L.). Wang, LF,Ma, JX,Zhou, RH,Wang, XM,Jia, JZ. 2002

[4]Genome-wide identification and functional prediction of novel and fungi-responsive lincRNAs in Triticum aestivum. Zhang, Hong,Hu, Weiguo,Hao, Jilei,Lv, Shikai,Wang, Changyou,Tong, Wei,Wang, Yajuan,Wang, Yanzhen,Liu, Xinlun,Ji, Wanquan,Hu, Weiguo. 2016

[5]Intercropping influenced the occurrence of stripe rust and powdery mildew in wheat. Luo, Huisheng,Jin, Ming'an,Jin, Shelin,Jia, Qiuzhen,Zhang, Bo,Huang, Jin,Wang, Xiaoming,Sun, Zhenyu,Shang, Xunwu,Cao, Shiqin,Duan, Xiayu,Zhou, Yilin,Chen, Wanquan,Liu, Taiguo.

[6]Identification of an AFLP marker linked to the stripe rust resistance gene Yr10 in wheat. Niu, YC,Zhu, LH,Zhai, WX,Xu, SC,Wu, LR.

[7]Identification and Validation of a Major Quantitative Trait Locus for Slow-rusting Resistance to Stripe Rust in Wheat. Cao, Xiaohua,Zhou, Jianghong,Gong, Xiaoping,Qi, Xiaoquan,Cao, Xiaohua,Zhao, Guangyao,Jia, Jizeng. 2012

[8]Genetic analysis and molecular mapping of stripe rust resistance genes in Chinese native wheat (Triticum aestivum) Lankao 5. Yao, Q.,He, M. M.,Jing, J. X.,Kang, Z. S.,Yao, Q.,He, M. M.,Hou, L.,Yan, J. H.,Guo, Q. Y..

[9]Molecular cloning, functional verification, and evolution of TmPm3, the powdery mildew resistance gene of Triticum monococcum L.. Zhao, C. Z.,Li, Y. H.,Dong, H. T.,Geng, M. M.,Liu, W. H.,Li, F.,Ni, Z. F.,Xie, C. J.,Sun, Q. X.,Zhao, C. Z.,Dong, H. T.,Geng, M. M.,Liu, W. H.,Li, F.,Ni, Z. F.,Xie, C. J.,Sun, Q. X.,Zhao, C. Z.,Wang, X. J.. 2016

[10]Thinopyrum ponticum and Th. intermedium: the promising source of resistance to fungal and viral diseases of wheat. Li, Hongjie,Wang, Xiaoming. 2009

[11]Postulation of Stripe Rust Resistance Genes in 44 Chinese Wheat Cultivars. Lin Ruiming,Xu Shichang,Xu Xiaodan,Lin Feng,Hussain, Khalid. 2011

[12]Microsatellite markers linked to 2 powdery mildew resistance genes introgressed from Triticum carthlicum accession PS5 into common wheat. Zhu, ZD,Zhou, RH,Kong, XY,Dong, YC,Jia, JZ. 2005

[13]Reaction to powdery mildew and stripe rust in related species and landraces of wheat. He, Danxia,Li, Hongjie,Xu, Shichang,Duan, Xiayu,Zhou, Yilin,Li, Lihui. 2007

[14]Breeding Adult Plant Resistance to Stripe Rust in Spring Bread Wheat Germplasm Adapted to Sichuan Province of China. Zou, Y. C.,Yang, W. Y.,Tang, Y. L.,He, Z. H.,Singh, R. P.. 2011

[15]Discovery of multiple IGS haplotypes within genotypes of Puccinia striiformis. Wang, Yanchun,Hao, Baojun,Zhang, Qiang,Tuo, Enlai,Sun, Guangyu,Zhang, Rong,Zhu, Mingqi,Wang, Yang,Wang, Yanchun,Hao, Baojun,Zhang, Qiang,Tuo, Enlai,Sun, Guangyu,Zhang, Rong,Zhu, Mingqi,Wang, Yang,Wang, Yanchun,Jin, Shelin,Hsiang, Tom. 2012

[16]Genetic Analysis and Molecular Mapping of an All-Stage Stripe Rust Resistance Gene in Triticum aestivum-Haynaldia villosa Translocation Line V3. Hou Lu,Ma Dong-fang,Hu Mao-lin,Lu Yan,Jing Jin-xue,Hou Lu,He Miao-miao,Hu Mao-lin. 2013

[17]Stripe rust resistance in Chinese bread wheat cultivars and lines. Xia, X. C.,Li, Z. F.,Li, G. Q.,He, Z. H.,Li, Z. F.,Li, G. Q.,Xia, X. C.,He, Z. H.,Singh, R. P.. 2007

[18]Molecular Screening and Resistance Evaluation of American Wheat Cultivars to Chinese Stripe Rust Races. Zhang Chun-yu,Sun Quan,Lin Feng,Cui Na,Gao Yang,Xu Xiao-dan,Xu Shi-chang,Bai Yu-lu,Xu Shi-chang. 2010

[19]Evidence of genetic recombination in wheat yellow rust populations of a Chinese oversummering area. Mboup, M.,Leconte, M.,Gautier, A.,de Vallavieille-Pope, C.,Enjalbert, J.,Wan, A. M.,Chen, W.,Wan, A. M..

[20]The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Lillemo, M.,Asalf, B.,Bjornstad, A.,Singh, R. P.,Huerta-Espino, J.,Chen, X. M.,He, Z. H..

作者其他论文 更多>>