Dissecting the Genetic Basis of Extremely Large Grain Shape in Rice Cultivar 'JZ1560'

文献类型: 外文期刊

第一作者: Ying, Jie-Zheng

作者: Ying, Jie-Zheng;Gao, Ji-Ping;Shan, Jun-Xiang;Zhu, Mei-Zhen;Shi, Min;Lin, Hong-Xuan;Ying, Jie-Zheng;Gao, Ji-Ping;Shan, Jun-Xiang;Zhu, Mei-Zhen;Shi, Min;Lin, Hong-Xuan;Ying, Jie-Zheng

作者机构:

关键词: Rice;Quantitative trait locus;Additive effect;Grain shape

期刊名称:JOURNAL OF GENETICS AND GENOMICS ( 影响因子:4.275; 五年影响因子:5.223 )

ISSN: 1673-8527

年卷期: 2012 年 39 卷 7 期

页码:

收录情况: SCI

摘要: Rice grain shape, grain length (GL), width (GW), thickness (GT) and length-to-width ratio (LWR), are usually controlled by multiple quantitative trait locus (QTL). To elucidate the genetic basis of extremely large grain shape, QTL analysis was performed using an F-2 population derived from a cross between a japonica cultivar 'JZ1560' (extremely large grain) and a contrasting indica cultivar 'FAZ1' (small grain). A total number of 24 QTLs were detected on seven different chromosomes. QTLs for GL, GW, GT and LWR explained 11.6%, 95.62%, 91.5% and 89.9% of total phenotypic variation, respectively. Many QTLs pleiotropically controlled different grain traits, contributing complex traits correlation. GW2 and qSW5/GW5, which have been cloned previously to control GW, showed similar chromosomal locations with qGW2-1/qGT2-1/qLWR2-2 and qGW5-2/qLWR5-1 and should be the right candidate genes. Plants pyramiding GW2 and qSW5/GW5 showed a significant increase in GW compared with those carrying one of the two major QTLs. Furthermore, no significant QTL interaction was observed between GW2 and qSW5/GW5. These results suggested that GW2 and qSW5/GW5 might work in independent pathways to regulate grain traits. 'JZ1560' alleles underlying all QTLs contributed an increase in GW and GT and the accumulation of additive effects generates the extremely large grain shape in 'JZ1560'.

分类号:

  • 相关文献

[1]Scanning QTLs for Grain Shape using Two Sets of Introgression Lines in Rice. Qiu, Xianjin,Du, Bin,Hu, Hui,Ou, Xiaoxue,Lv, Wenkai,Yang, Longwei,Xing, Danying,Xu, Junying,Li, Zhixin,Zhang, Yunbo,Wang, Xiaoyan,Xu, Jianlong,Xu, Jianlong,Zheng, Tianqing,Qiu, Xianjin. 2017

[2]Additive and Over-dominant Effects Resulting from Epistatic Loci Are the Primary Genetic Basis of Heterosis in Rice. Luo, Xiaojin,Fu, Yongcai,Wu, Shuang,Tian, Feng,Liu, Jiayong,Zhu, Zuofeng,Sun, Chuanqing,Luo, Xiaojin,Fu, Yongcai,Wu, Shuang,Tian, Feng,Liu, Jiayong,Zhu, Zuofeng,Sun, Chuanqing,Luo, Xiaojin,Fu, Yongcai,Wu, Shuang,Tian, Feng,Liu, Jiayong,Zhu, Zuofeng,Sun, Chuanqing,Luo, Xiaojin,Fu, Yongcai,Wu, Shuang,Tian, Feng,Liu, Jiayong,Zhu, Zuofeng,Sun, Chuanqing,Luo, Xiaojin,Yang, Jinshui,Zhang, Peijiang.

[3]A Kelch Motif-Containing Serine/Threonine Protein Phosphatase Determines the Large Grain QTL Trait in Rice. Hu, Zejun,Sun, Fan,Xin, Xiaoyun,Qian, Xi,Yang, Jingshui,Luo, Xiaojin,Hu, Zejun,He, Haohua,Wang, Wenxiang,Zhang, Shiyong. 2012

[4]Brassinosteroids Regulate OFP1, a DLT Interacting Protein, to Modulate Plant Architecture and Grain Morphology in Rice. Xiao, Yunhua,Liu, Dapu,Zhang, Guoxia,Chu, Chengcai,Xiao, Yunhua,Liu, Dapu,Zhang, Guoxia,Chu, Chengcai,Xiao, Yunhua,Liu, Dapu,Zhang, Guoxia,Chu, Chengcai,Tong, Hongning. 2017

[5]New Candidate Genes Affecting Rice Grain Appearance and Milling Quality Detected by Genome-Wide and Gene-Based Association Analyses. Wang, Xiaoqian,Pang, Yunlong,Wang, Chunchao,Shen, Congcong,Xu, Jianlong,Li, Zhikang,Chen, Kai,Zhu, Yajun,Xu, Jianlong,Ali, Jauhar,Xu, Jianlong,Li, Zhikang. 2017

[6]Molecular functions of genes related to grain shape in rice. Zheng, Jia,Zhang, Yadong,Wang, Cailin.

[7]Genome wide association mapping for grain shape traits in indica rice. Feng, Yue,Lu, Qing,Zhang, Mengchen,Xu, Qun,Yang, Yaolong,Wang, Shan,Yuan, Xiaoping,Yu, Hanyong,Wang, Yiping,Wei, Xinghua,Zhai, Rongrong.

[8]Natural Variations in SLG7 Regulate Grain Shape in Rice. Miao, Jun,Peng, Xiurong,Leburu, Mamotshewa,Yuan, Fuhai,Gu, Houwen,Gao, Yun,Tao, Yajun,Gong, Zhiyun,Yi, Chuandeng,Gu, Minghong,Yang, Zefeng,Liang, Guohua,Gu, Haiyong,Zhu, Jinyan.

[9]Mapping of qGL7-2, a grain length QTL on chromosome 7 of rice. Shao, Gaoneng,Tang, Shaoqing,Luo, Ju,Jiao, Guiai,Wei, Xiangjin,Tang, Ao,Wu, Jianli,Zhuang, Jieyun,Hu, Peisong. 2010

[10]Substitution mapping of QTLs for blast resistance with SSSLs in rice (Oryza sativa L.). Zhang, Yuexiong,Shan, Zelin,Qiao, Weihua,Xie, Qingjun,Zhu, Haitao,Zhang, Zemin,Zeng, Ruizhen,Ding, Xiaohua,Zhang, Guiquan,Yang, Jianyuan,Chen, Shen,Zhu, Haitao,Zhang, Zemin,Zeng, Ruizhen,Zhang, Guiquan. 2012

[11]Mapping of Quantitative Trait Loci for Contents of Macro- and Microelements in Milled Rice (Oryza sativa L.). Yu, Yong-Hong,Shao, Ya-Fang,Liu, Jie,Fan, Ye-Yang,Sun, Cheng-Xiao,Cao, Zhao-Yun,Zhuang, Jie-Yun.

[12]Quantitative Trait Locus Analysis for Rice Yield Traits under Two Nitrogen Levels. Feng Yue,Lin Ze-chuan,Cao Li-yong,Wei Xing-hua,Cheng Shi-hua,Zhai Rong-rong. 2015

[13]Identification of QTLs for Yield-Related Traits using Two Sets of Introgression Lines with a Common Donor Parent in Rice. Zhang, Jian,Ou, Xiaoxue,Hu, Hui,Du, Bin,Lv, Wenkai,Yang, Longwei,Xing, Danying,Qiu, Xianjin,Xu, Junying,Li, Zhixin,Zhang, Yunbo,Wang, Xiaoyan,Xu, Jianlong,Xu, Jianlong,Zheng, Tianqing,Qiu, Xianjin. 2018

[14]Dissection of the qTGW1.1 region into two tightly-linked minor QTLs having stable effects for grain weight in rice. Zhang, Hong-Wei,Fan, Ye-Yang,Zhu, Yu-Jun,Chen, Jun-Yu,Zhuang, Jie-Yun,Zhang, Hong-Wei,Fan, Ye-Yang,Zhu, Yu-Jun,Chen, Jun-Yu,Zhuang, Jie-Yun,Zhang, Hong-Wei,Yu, Si-Bin,Zhang, Hong-Wei,Yu, Si-Bin. 2016

[15]Genetic Dissection of Low Phosphorus Tolerance Related Traits Using Selected Introgression Lines in Rice. Xiang Chao,Ren Jie,Zhao Xiu-qin,Ding Zai-song,Zhang Jing,Wang Chao,Zhang Jun-wei,Joseph, Charles Augustino,Zhang Qiang,Pang Yun-long,Gao Yong-ming,Ren Jie,Zhang Jing,Wang Chao,Zhang Jun-wei,Shi Ying-yao,Ren Jie. 2015

[16]Identification of QTLs Underlying Folate Content in Milled Rice. Dong Wei,Cheng Zhi-jun,Xu Jian-long,Zheng Tian-qing,Wang Xiao-le,Zhang Hong-zheng,Wang Jie,Wan Jian-min. 2014

[17]Mapping resistant QTLs for rice sheath blight disease with a doubled haploid population. Zeng Yu-xiang,Xia Ling-zhi,Wen Zhi-hua,Ji Zhi-juan,Zeng Da-li,Qian Qian,Yang Chang-deng. 2015

[18]Identification and characterization of quantitative trait loci for grain yield and its components under different nitrogen fertilization levels in rice (Oryza sativa L.). Tong, Han-hua,Xing, Yong-zhong,Luo, Li-jun,Tong, Han-hua,Chen, Liang,Li, Wei-ping,Mei, Han-wei,Yu, Xing-qiao,Xu, Xiao-yan,Luo, Li-jun,Tong, Han-hua,Zhang, Shan-qing. 2011

[19]Mapping QTLs related to rice seed storability under natural and artificial aging storage conditions. Ngo Thi Hang,Lin, Qiuyun,Liu, Linglong,Liu, Xi,Liu, Shijia,Wang, Wenyan,Li, Linfang,He, Niqing,Liu, Zhou,Jiang, Ling,Wan, Jianmin,Wan, Jianmin.

[20]Mapping quantitative trait loci associated with starch paste viscosity in rice (Oryza sativa L.) under different environmental conditions. Yao, Xiaoyun,Wang, Jiayu,Liu, Jin,Zhang, Jia,Ma, Dianrong,Xu, Hai,Xu, Zhengjin,Yao, Xiaoyun,Wang, Jiayu,Zhang, Jia,Ma, Dianrong,Xu, Hai,Xu, Zhengjin,Liu, Jin,Ren, Chunyuan.

作者其他论文 更多>>