Identification of Quantitative Trait Loci for Lipid Metabolism in Rice Seeds

文献类型: 外文期刊

第一作者: Ying, Jie-Zheng

作者: Ying, Jie-Zheng;Shan, Jun-Xiang;Gao, Ji-Ping;Zhu, Mei-Zhen;Shi, Min;Lin, Hong-Xuan;Ying, Jie-Zheng;Shan, Jun-Xiang;Gao, Ji-Ping;Zhu, Mei-Zhen;Shi, Min;Lin, Hong-Xuan;Ying, Jie-Zheng

作者机构:

关键词: Rice;fatty acid;seed oil;lipid metabolism;QTL

期刊名称:MOLECULAR PLANT ( 影响因子:13.164; 五年影响因子:16.357 )

ISSN: 1674-2052

年卷期: 2012 年 5 卷 4 期

页码:

收录情况: SCI

摘要: Plant seed oil is important for human dietary consumption and industrial application. The oil trait is controlled by quantitative trait loci (QTLs), but no QTLs for fatty acid composition are known in rice, the monocot model plant. QTL analysis was performed using F2 and F2: 3 progeny from a cross of an indica variety and a japonica variety. Gas chromatography- mass spectrometry (GC-MS) analysis revealed significant differences between parental lines in fatty acid composition of brown rice oil, and 29 associated QTLs in F2 and/ or F2: 3 populations were identified throughout the rice genome, except chromosomes 9 and 10. Eight QTLs were repeatedly identified in both populations across different environments. Five loci pleiotropically controlled different traits, contributing to complex interactions of oil with fatty acids and between fatty acids. Nine rice orthologs of Arabidopsis genes encoding key enzymes in lipid metabolism co-localized with 11 mapped QTLs. A strong QTL for oleic (18: 1) and linoleic (18: 2) acid were associated with a rice ortholog of a gene encoding acyl-CoA: diacylglycerol acyltransferase (DGAT), and another for palmitic acid (16: 0) mapped similarly to the acylACP thioesterase (FatB) gene ortholog. Our approach rapidly and efficiently identified candidate genes for mapped QTLs controlling fatty acid composition and oil concentration, providing information for improving rice grain quality by marker assisted selection.

分类号:

  • 相关文献

[1]Seed Transcriptomics Analysis in Camellia oleifera Uncovers Genes Associated with Oil Content and Fatty Acid Composition. Wang, Kailiang,Yao, Xiaohua,Yin, Hengfu,Zhou, Changfu,Xie, Yunhai. 2018

[2]Comparison of the activities of hydrophilic anthocyanins and lipophilic tocols in black rice bran against lipid oxidation. Zhang, Xiumei,Zhang, Xiumei,Shen, Yixiao,Prinyawiwatkul, Witoon,King, Joan M.,Xu, Zhimin.

[3]A Rare Allele of GS2 Enhances Grain Size and Grain Yield in Rice. Hu, Jiang,Wang, Yuexing,Fang, Yunxia,Xu, Jie,Yu, Haiping,Shi, Zhenyuan,Pan, Jiangjie,Zhang, Dong,Zhu, Li,Dong, Guojun,Guo, Longbiao,Zeng, Dali,Zhang, Guangheng,Xie, Lihong,Qian, Qian,Zeng, Longjun,Kang, Shujing,Xiong, Guosheng,Qian, Qian,Li, Jiayang,Li, Jiayang. 2015

[4]Bayesian dissection for genetic architecture of traits associated with nitrogen utilization efficiency in rice. Yang, Runqing,Piao, Zhongze,Li, Maobai,Zhang, Jianming,Wang, Hui,Li, Peide,Zhu, Chunmei,Luo, Zhixiang,Lee, Jungro. 2009

[5]QTL Mapping by Whole Genome Re-sequencing and Analysis of Candidate Genes for Nitrogen Use Efficiency in Rice. Xia, Xiuzhong,Zhang, Zongqiong,Nong, Baoxuan,Zeng, Yu,Deng, Guofu,Li, Danting,Xiong, Faqian,Wu, Yanyan,Gao, Ju. 2017

[6]Analysis of QTLs for seed low temperature germinability and anoxia germinability in rice (Oryza sativa L.). Jiang, L,Liu, SJ,Hou, MY,Tang, JY,Chen, LM,Zhai, HQ,Wan, JM. 2006

[7]Mapping QTL with Main Effect, Digenic Epistatic and QTL x Environment Interactions of Panicle Related Traits in Rice (Oryza sativa). Leng, Yujia,Huang, Lichao,Chen, Long,Ren, Deyong,Yang, Yaolong,Zhang, Guangheng,Hu, Jiang,Zhu, Li,Guo, Longbiao,Qian, Qian,Zeng, Dali,Leng, Yujia,Lin, Yongjun,Leng, Yujia,Lin, Yongjun,Xue, Dawei. 2017

[8]QTL mapping reveals a tight linkage between QTLs for grain weight and panicle spikelet number in rice. Luo, Xiao,Lee, Hyun-Sook,Kim, Dong-Min,Balkunde, Sangshetty,Kang, Ju-Won,Ahn, Sang-Nag,Ji, Shi-Dong,Yuan, Ping-Rong. 2013

[9]Dissection of combining ability for yield and related traits using introgression lines in the background of a key restorer line in rice (Oryza sativa L.). Xiang, Chao,Zhang, Hongjun,Wang, Jie,Wang, Wensheng,Gao, Yongming,Wang, Hui,Xia, Jiafa,Ye, Guoyou.

[10]Genetic analysis for rice seedling vigor and fine mapping of a major QTL qSSL1b for seedling shoot length. Zhang, Anpeng,Liu, Chaolei,Chen, Guang,Hong, Kai,Gao, Yang,Tian, Peng,Peng, Youlin,Zhang, Bin,Ruan, Banpu,Jiang, Hongzhen,Guo, Longbiao,Qian, Qian,Gao, Zhenyu.

[11]Genetic Overlap in the Quantitative Resistance of Rice at the Seedling and Adult Stages to Xanthomonas oryzae pv. oryzae. Zhou, Yong-Li,Xie, Xue-Wen,Xu, Mei-Rong,Zang, Jin-Ping,Zhu, Ling-Hua,Xu, Jian-Long,Li, Zhi-Kang,Li, Zhi-Kang.

[12]Identification of QTLs for rice flower opening time in two environments. Zhang, Meng,Zhang, Huali,Dai, Dongqing,Li, Ximing,Chen, Junyu,Ma, Liangyong,Bao, Jinsong.

[13]The way to a more precise sheath blight resistance QTL in rice. Zeng, Yuxiang,Ji, Zhijuan,Yang, Changdeng.

[14]Fine mapping of a major QTL for flag leaf width in rice, qFLW4, which might be caused by alternative splicing of NAL1. Chen, Mingliang,Luo, Ju,Shao, Gaoneng,Wei, Xiangjin,Tang, Shaoqing,Sheng, Zhonghua,Song, Jian,Hu, Peisong,Chen, Mingliang.

[15]Association Mapping and Marker Development of Genes for Starch Lysophospholipid Synthesis in Rice. Tong Chuan,Bao Jin-Song,Tong Chuan,Liu Lei,Waters, Daniel L. E.. 2016

[16]Identification of QTLs associated with physiological nitrogen use efficiency in rice. Cho, Young-Il,Jiang, Wenzhu,Chin, Joong-Hyoun,Piao, Zhongze,Cho, Yong-Gu,McCouch, Susan R.,Koh, Hee-Jong. 2007

[17]QTL detection of amino acid content in grains of rice using advanced backcross introgression lines. Cheng, Li-Rui,Luo, Cheng-Gang,Xu, Jian-Long. 2013

[18]Genetic analysis of flag leaf size and candidate genes determination of a major QTL for flag leaf width in rice. Zhang, Bin,Ye, Weijun,Ren, Deyong,Tian, Peng,Peng, Youlin,Gao, Yang,Ruan, Banpu,Wang, Li,Zhang, Guangheng,Guo, Longbiao,Qian, Qian,Gao, Zhenyu. 2015

[19]Efficient QTL detection for heading date in backcross inbred line and F-2 population derived from the same rice cross. Lu, Bingyue,Xie, Kun,Yang, Chunyan,Zhang, Long,Wu, Tao,Li, Linfang,Liu, Xi,Jiang, Ling,Wan, Jianmin,Wan, Jianmin. 2011

[20]QTL mapping and candidate gene analysis of ferrous iron and zinc toxicity tolerance at seedling stage in rice by genome-wide association study. Zhang, Jian,Chen, Kai,Pang, Yunlong,Naveed, Shahzad Amir,Zhao, Xiuqin,Wang, Xiaoqian,Wang, Yun,Li, Zhikang,Xu, Jianlong,Chen, Kai,Li, Zhikang,Xu, Jianlong,Dingkuhn, Michael,Dingkuhn, Michael,Dingkuhn, Michael,Pasuquin, Julie,Li, Zhikang,Xu, Jianlong. 2017

作者其他论文 更多>>