Changes in terpene biosynthesis and submergence tolerance in cotton
文献类型: 外文期刊
第一作者: Sun, Liangqing
作者: Sun, Liangqing;Wang, Junjuan;Cui, Yupeng;Cui, Ruifeng;Kang, Ruiqing;Zhang, Yuexin;Wang, Shuai;Zhao, Lanjie;Wang, Delong;Lu, Xuke;Fan, Yapeng;Han, Mingge;Chen, Chao;Chen, Xiugui;Guo, Lixue;Ye, Wuwei;Sun, Liangqing
作者机构:
关键词: Submergence; Transcriptome; Terpene biosynthesis; Cotton; Respiratory metabolism
期刊名称:BMC PLANT BIOLOGY ( 影响因子:5.3; 五年影响因子:5.9 )
ISSN: 1471-2229
年卷期: 2023 年 23 卷 1 期
页码:
收录情况: SCI
摘要: BackgroundFlooding is among the most severe abiotic stresses in plant growth and development. The mechanism of submergence tolerance of cotton in response to submergence stress is unknown.ResultsThe transcriptome results showed that a total of 6,893 differentially expressed genes (DEGs) were discovered under submergence stress. Gene Ontology (GO) enrichment analysis showed that DEGs were involved in various stress or stimulus responses. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that DEGs related to plant hormone signal transduction, starch and sucrose metabolism, glycolysis and the biosynthesis of secondary metabolites were regulated by submergence stress. Eight DEGs related to ethylene signaling and 3 ethylene synthesis genes were identified in the hormone signal transduction. For respiratory metabolism, alcohol dehydrogenase (ADH, GH_A02G0728) and pyruvate decarboxylase (PDC, GH_D09G1778) were significantly upregulated but 6-phosphofructokinase (PFK, GH_D05G0280), phosphoglycerate kinase (PGK, GH_A01G0945 and GH_D01G0967) and sucrose synthase genes (SUS, GH_A06G0873 and GH_D06G0851) were significantly downregulated in the submergence treatment. Terpene biosynthetic pathway-related genes in the secondary metabolites were regulated in submergence stress.ConclusionsRegulation of terpene biosynthesis by respiratory metabolism may play a role in enhancing the tolerance of cotton to submergence under flooding. Our findings showed that the mevalonate pathway, which occurs in the cytoplasm of the terpenoid backbone biosynthesis pathway (ko00900), may be the main response to submergence stress.
分类号:
- 相关文献
作者其他论文 更多>>
-
The gut mycobiome signatures in long-lived populations
作者:Pu, Lixia;Mu, Wenjie;Zou, Yang;Wang, Yugui;Ding, Yingying;Yan, Qi;Wang, Shuai;Pang, Shifu;Chen, Xiaodong;Huang, Yu;Chen, Xiaochun;Luo, Weifei;Chen, Xiaodong;Chen, Xiaochun;Luo, Weifei;Peng, Tao
关键词:
-
Genome-wide characterization of DNA methyltransferase family genes implies GhDMT6 improving tolerance of salt and drought on cotton
作者:Yang, Xiaomin;Yin, Zujun;Wang, Xiaoge;Zhang, Binglei;Han, Mingge;Lu, Xuke;Chen, Xiugui;Wang, Delong;Wang, Junjuan;Wang, Shuai;Guo, Lixue;Chen, Chao;Ye, Wuwei;Yang, Xiaomin;Bai, Zhigang;Sun, Liangqing;Li, Yongqi;He, Yunxin;Wang, Ning;Feng, Keyun
关键词:C5-MTase; Gossypium raimondii; Gossypium arboreum; Gossypium hirsutum; Abiotic stress
-
Asproinocybe hongyaniae sp. nov. (Agaricales, Basidiomycota) in Thailand
作者:Lv, Tong;Wang, Shuai;Wu, Xiaoqu;Chen, Dechao;Luo, Hongmei;Li, Erxian;Tang, Songming;Li, Shuhong;Lv, Tong;Wang, Shuai;Wu, Xiaoqu;Chen, Dechao;Ao, Chengce;Ao, Chengce
关键词:ITS; nrLSU; new taxa; phylogenetic analysis; taxonomy
-
GhVIM28, a negative regulator identified from VIM family genes, positively responds to salt stress in cotton
作者:Yang, Zhining;Lu, Xuke;Fan, Yapeng;Zhang, Menghao;Wang, Lidong;Sun, Yuping;Chen, Xiao;Huang, Hui;Meng, Yuan;Liu, Mengyue;Han, Mingge;Chen, Wenhua;Zhang, Xinrui;Yu, Xin;Chen, Xiugui;Wang, Shuai;Wang, Junjuan;Zhao, Lanjie;Guo, Lixue;Ye, Wuwei;Yang, Zhining;Gao, Wenwei;Wang, Ning;Feng, Keyun;Mei, Zhengding;Peng, Fanjia
关键词:E3 ubiquitin ligase; GhVIM28; Salinity stress; Antioxidant
-
Prevalence of intestinal trichomonads in captive non-human primates in China
作者:Ma, Ping-Ping;Zou, Yang;Mu, Wen-Jie;Zhang, Yue-Yue;Li, Ya-Qi;Liu, Zhong-Li;Zhang, Long;Chen, Li-Xian;Wang, Shuai;Ma, Ping-Ping;Liu, Guo-Hua
关键词:Trichomonads; Prevalence; Non-human primates
-
Small particles, big effects: How nanoparticles can enhance plant growth in favorable and harsh conditions
作者:Wang, Jie;Ye, Wuwei;Yin, Zujun;Wang, Jie;Ye, Wuwei;Yin, Zujun;Wu, Honghong;Wang, Yichao;Ye, Wuwei;Yin, Zujun;Kong, Xiangpei
关键词:abiotic stress; agricultural; defense system; nanoparticles; nanotechnology; oxidative stress; reactive oxygen species; toxicity
-
Chelation of the Optimal Antifungal Pogostone Analogue with Copper(II) to Explore the Dual Antifungal and Antibacterial Agent
作者:Wang, Delong;Yuan, Chunxia;Li, Yunpeng;Bai, Shuhong;Fang, Yali;Zhang, Zhijia;Feng, Juntao;Wang, Yong
关键词:pogostoneanalogue; alkyl side chain; antifungaland antibacterial activities; control efficacy; mode of action