Whole-genome strategies for marker-assisted plant breeding

文献类型: 外文期刊

第一作者: Xu, Yunbi

作者: Xu, Yunbi;Lu, Yanli;Gao, Shibin;Prasanna, Boddupalli M.

作者机构:

关键词: Molecular breeding;Whole-genome strategies;Marker-assisted selection;Marker-assisted recurrent selection;Genomic selection;Genotyping platform;Precision phenotyping;Environmental assay (e-typing);Breeding informatics;Decision support tools

期刊名称:MOLECULAR BREEDING ( 影响因子:2.589; 五年影响因子:2.75 )

ISSN: 1380-3743

年卷期: 2012 年 29 卷 4 期

页码:

收录情况: SCI

摘要: Molecular breeding for complex traits in crop plants requires understanding and manipulation of many factors influencing plant growth, development and responses to an array of biotic and abiotic stresses. Molecular marker-assisted breeding procedures can be facilitated and revolutionized through whole-genome strategies, which utilize full genome sequencing and genome-wide molecular markers to effectively address various genomic and environmental factors through a representative or complete set of genetic resources and breeding materials. These strategies are now increasingly based on understanding of specific genomic regions, genes/alleles, haplotypes, linkage disequilibrium (LD) block(s), gene networks and their contribution to specific phenotypes. Large-scale and high-density genotyping and genome-wide selection are two important components of these strategies. As components of whole-genome strategies, molecular breeding platforms and methodologies should be backed up by high throughput and precision phenotyping and e-typing (environmental assay) with strong support systems such as breeding informatics and decision support tools. Some basic strategies are discussed in this article, including (1) seed DNA-based genotyping for simplifying marker-assisted selection (MAS), reducing breeding cost and increasing scale and efficiency, (2) selective genotyping and phenotyping, combined with pooled DNA analysis, for capturing the most important contributing factors, (3) flexible genotyping systems, such as genotyping by sequencing and arraying, refined for different selection methods including MAS, marker-assisted recurrent selection and genomic selection (GS), (4) marker-trait association analysis using joint linkage and LD mapping, and (5) sequence-based strategies for marker development, allele mining, gene discovery and molecular breeding.

分类号:

  • 相关文献

[1]Breeding to Optimize Agriculture in a Changing World. Wang, Jiankang,Wan, Jianmin,Luis Araus, Jose. 2015

[2]Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Varshney, Rajeev K.,Mohan, S. Murali,Gaur, Pooran M.,Pandey, Manish K.,Sawargaonkar, Shrikant L.,Chitikineni, Annapurna,Janila, Pasupuleti,Saxena, K. B.,Sharma, Mamta,Rathore, Abhishek,Mallikarjuna, Nalini,Gowda, C. L. L.,Varshney, Rajeev K.,Varshney, Rajeev K.,Varshney, Rajeev K.,Liang, Xuanqiang,Gangarao, N. V. P. R.,Pandey, Manish K.,Bohra, Abhishek,Pratap, Aditya,Datta, Subhojit,Chaturvedi, S. K.,Nadarajan, N.,Kimurto, Paul K.,Fikre, Asnake,Tripathi, Shailesh,Bharadwaj, Ch.,Anuradha, G.,Babbar, Anita,Choudhary, Arbind K.,Mhase, M. B.,Mannur, D. M.. 2013

[3]Comparative study of estimation methods for genomic breeding values. Wang, Chonglong,Qian, Rong,Wang, Chonglong,Zhang, Qin,Jiang, Li,Ding, Xiangdong,Wang, Chonglong,Zhao, Yaofeng. 2016

[4]Incorporating Gene Annotation into Genomic Prediction of Complex Phenotypes. Gao, Ning,Zhang, Zhe,Yuan, Xiaolong,Zhang, Hao,Li, Jiaqi,Gao, Ning,Martini, Johannes W. R.,Simianer, Henner. 2017

[5]Genome-Wide Association Study and QTL Mapping Reveal Genomic Loci Associated with Fusarium Ear Rot Resistance in Tropical Maize Germplasm. Chen, Jiafa,Ding, Junqiang,Wu, Jianyu,Chen, Jiafa,Ding, Junqiang,Wu, Jianyu,Wu, Jianyu,Chen, Jiafa,Shrestha, Rosemary,Zheng, Hongjian,Mu, Chunhua,Mahuku, George,Zheng, Hongjian,Mu, Chunhua,Mahuku, George. 2016

[6]Improving accuracy of genomic prediction by genetic architecture based priors in a Bayesian model. Gao, Ning,Li, Jiaqi,He, Jinlong,Xiao, Guang,Luo, Yuanyu,Zhang, Hao,Chen, Zanmou,Zhang, Zhe,Gao, Ning,Zhang, Zhe. 2015

[7]Accuracy of genomic prediction for milk production traits in the Chinese Holstein population using a reference population consisting of cows. Ding, X.,Zhang, Z.,Li, X.,Wang, S.,Wu, X.,Sun, D.,Yu, Y.,Liu, J.,Wang, Y.,Zhang, Y.,Zhang, S.,Zhang, Y.,Zhang, Q.,Zhang, Z.. 2013

[8]Genetic parameters and trends for production and reproduction traits of a Landrace herd in China. Zhang Zhe,Zhang Hao,Pan Rong-yang,Wu Long,Li Ya-lan,Chen Zan-mou,Cai Geng-yuan,Li Jia-qi,Wu Zhen-fang. 2016

[9]Potential of marker selection to increase prediction accuracy of genomic selection in soybean (Glycine max L.). Li, Wenbin,Ma, Yansong,Liu, Zhangxiong,Guo, Yong,Qiu, Lijuan,Ma, Yansong,Luan, Xiaoyan,Reif, Jochen C.,Jiang, Yong,Wen, Zixiang,Wang, Dechun,Han, Tianfu,Wu, Cunxiang,Sun, Shi,Wei, Shuhong,Wang, Shuming,Yang, Chunming,Wang, Huicai,Yang, Chunming,Zhang, Mengchen,Lu, Weiguo,Xu, Ran,Zhou, Rong,Zhou, Xinan,Wang, Ruizhen,Sun, Zudong,Chen, Huaizhu,Zhang, Wanhai,Sun, Bincheng,Wu, Jian,Han, Dezhi,Yan, Hongrui,Hu, Guohua,Liu, Chunyan,Fu, Yashu,Chen, Weiyuan,Guo, Tai,Zhang, Lei,Yuan, Baojun.

[10]The strategy and potential utilization of temperate germplasm for tropical germplasm improvement: a case study of maize (Zea mays L.). Wen, Weiwei,Tovar, Victor H. Chavez,Taba, Suketoshi,Wen, Weiwei,Yan, Jianbing,Guo, Tingting,Li, Huihui. 2012

[11]Transcriptome Analysis Suggests That Chromosome Introgression Fragments from Sea Island Cotton (Gossypium barbadense) Increase Fiber Strength in Upland Cotton (Gossypium hirsutum). Quanwei Lu,Yuzhen Shi,Huang, Jinling,Yuan, Youlu,Xianghui Xiao,Pengtao Li,Juwu Gong,Wankui Gong,Aiying Liu,Haihong Shang,Junwen Li,Qun Ge,Weiwu Song,Shaoqi Li,Zhen Zhang,Md Harun or Rashid,Renhai Peng,Youlu Yuan,Jinling Huang. 2017

[12]Effect of Trait Heritability, Training Population Size and Marker Density on Genomic Prediction Accuracy Estimation in 22 bi-parental Tropical Maize Populations. Zhang, Ao,Liu, Yubo,Cui, Zhenhai,Ruan, Yanye,Yu, Haiqiu,Zhang, Ao,Wang, Hongwu,Liu, Yubo,Burgueno, Juan,San Vicente, Felix,Crossa, Jose,Zhang, Xuecai,Wang, Hongwu,Beyene, Yoseph,Semagn, Kassa,Olsen, Michael,Prasanna, Boddupalli M.,Cao, Shiliang,Semagn, Kassa. 2017

[13]Comparison of single-trait and multiple-trait genomic prediction models. Guo, Gang,Zhao, Fuping,Du, Lixin,Guo, Gang,Guo, Gang,Wang, Yachun,Zhang, Yuan,Guo, Gang,Su, Guosheng. 2014

[14]Genome-Wide SNP Discovery and Analysis of Genetic Diversity in Farmed Sika Deer (Cervus nippon) in Northeast China Using Double-Digest Restriction Site-Associated DNA Sequencing. Ba, Hengxing,Jia, Boyin,Wang, Guiwu,Yang, Yifeng,Li, Chunyi,Kedem, Gilead. 2017

[15]Accuracy of genomic prediction using low-density marker panels. Zhang, Z.,Ding, X.,Liu, J.,Zhang, Q.,Zhang, Z.,de Koning, D. -J.,Zhang, Z.,de Koning, D. -J.,de Koning, D. -J..

[16]A novel genomic selection method combining GBLUP and LASSO. Li, Hengde,Wang, Jingwei,Li, Hengde,Bao, Zhenmin,Wang, Jingwei.

[17]Bayesian methods for estimating GEBVs of threshold traits. Wang, C-L,Ding, X-D,Wang, J-Y,Liu, J-F,Fu, W-X,Zhang, Z.,Yin, Z-J,Zhang, Q.,Wang, C-L.

[18]Genetic improvement of cotton tolerance to salinity stress. Ma, Xinrong,Dong, Hezhong,Li, Weijiang,Ma, Xinrong. 2011

[19]Development and application of KASP marker for high throughput detection of AhFAD2 mutation in peanut. Zhao, Shuzhen,Li, Aiqin,Li, Changsheng,Xia, Han,Zhao, Chuanzhi,Zhang, Ye,Hou, Lei,Wang, Xingjun. 2017

[20]Advances in Molecular Breeding Research of Goat Fecundity. Wang, Jian-Ying,Zhang, Xiu-Mei,Lan, Zou-Ran. 2012

作者其他论文 更多>>