The Statistical Power of Inclusive Composite Interval Mapping in Detecting Digenic Epistasis Showing Common F2 Segregation Ratios

文献类型: 外文期刊

第一作者: Wang, Jiankang

作者: Wang, Jiankang

作者机构:

关键词: Epistasis;false discovery rate;inclusive composite interval mapping;power analysis;simulation study

期刊名称:JOURNAL OF INTEGRATIVE PLANT BIOLOGY ( 影响因子:7.061; 五年影响因子:6.002 )

ISSN: 1672-9072

年卷期: 2012 年 54 卷 4 期

页码:

收录情况: SCI

摘要: Epistasis is a commonly observed genetic phenomenon and an important source of variation of complex traits, which could maintain additive variance and therefore assure the long-term genetic gain in breeding. Inclusive composite interval mapping (ICIM) is able to identify epistatic quantitative trait loci (QTLs) no matter whether the two interacting QTLs have any additive effects. In this article, we conducted a simulation study to evaluate detection power and false discovery rate (FDR) of ICIM epistatic mapping, by considering F2 and doubled haploid (DH) populations, different F2 segregation ratios and population sizes. Results indicated that estimations of QTL locations and effects were unbiased, and the detection power of epistatic mapping was largely affected by population size, heritability of epistasis, and the amount and distribution of genetic effects. When the same likelihood of odd (LOD) threshold was used, detection power of QTL was higher in F2 population than power in DH population; meanwhile FDR in F2 was also higher than that in DH. The increase of marker density from 10 cM to 5 cM led to similar detection power but higher FDR. In simulated populations, ICIM achieved better mapping results than multiple interval mapping (MIM) in estimation of QTL positions and effect. At the end, we gave epistatic mapping results of ICIM in one actual population in rice (Oryza sativa L.).

分类号:

  • 相关文献

[1]Statistical properties of QTL linkage mapping in biparental genetic populations. Li, H.,Wang, J.,Li, H.,Wang, J.,Li, H.,Li, Z.,Hearne, S.,Baenziger, M.. 2010

[2]On the use of mathematically-derived traits in QTL mapping. Wang, Yu,Li, Huihui,Zhang, Luyan,Wang, Jiankang,Wang, Yu,Li, Huihui,Zhang, Luyan,Wang, Jiankang,Wang, Yu,Lu, Wenyan.

[3]A simulation study of inorganic sulfur cycling in the water level fluctuation zone of the Three Gorges Reservoir, China and the implications for mercury methylation. Liu, Jiang,Jiang, Tao,Huang, Rong,Wang, Dingyong,Zhang, Jinzhong,Qian, Sheng,Yin, Deliang,Chen, Hong,Jiang, Tao,Wang, Dingyong,Zhang, Jinzhong,Chen, Hong,Jiang, Tao. 2017

[4]Efficiency of selective genotyping for genetic analysis of complex traits and potential applications in crop improvement. Crouch, Jonathan H.,Xu, Yunbi,Sun, Yanping,Wang, Jiankang,Sun, Yanping,Wang, Jiankang.

[5]QTL Detection and Epistasis Analysis for Heading Date Using Single Segment Substitution Lines in Rice (Oryza sativa L.). Li Guang-xian,Li Si-shen,Chen Ai-hua,Liu Xu,Wang Wen-ying,Ding Han-feng,Li Jun,Liu Wei,Yao Fang-yin,Li Guang-xian. 2014

[6]Detection of epistatic interactions of three QTLs for heading date in rice using single segment substitution lines. Ding, Han-Feng,Liu, Xu,Li, Run-Fang,Wang, Wen-Ying,Zhang, Y.,Zhang, Xiao-Dong,Yao, Fang-Yin,Li, Guang-Xian,Jiang, Ming-Song,Ding, Han-Feng.

[7]Genetic dissection of growth traits in a Chinese indigenous x commercial broiler chicken cross. Sheng, Zheya,Hu, Xiaoxiang,Li, Ning,Sheng, Zheya,Pettersson, Mats E.,Shen, Xia,Carlborg, Orjan,Luo, Chenglong,Qu, Hao,Shu, Dingming. 2013

[8]QTLs influencing panicle size detected in two reciprocal introgressive line (IL) populations in rice (Oryza sativa L.). Mei, HW,Xu, JL,Li, ZK,Yu, XQ,Guo, LB,Wang, YP,Ying, CS,Luo, LJ. 2006

[9]RFLP-facilitated investigation of the quantitative resistance of rice to brown planthopper (Nilaparvata lugens). Xu, XF,Mei, HW,Luo, LJ,Cheng, XN,Li, ZK. 2002

[10]Identification of genome-wide SNP-SNP interactions associated with important traits in chicken. Zhang, Hui,Yu, Jia-Qiang,Yang, Li-Li,Zhang, Xin-Yang,Na, Wei,Li, Hui,Zhang, Hui,Yu, Jia-Qiang,Yang, Li-Li,Zhang, Xin-Yang,Na, Wei,Li, Hui,Zhang, Hui,Yu, Jia-Qiang,Yang, Li-Li,Zhang, Xin-Yang,Na, Wei,Li, Hui,Kramer, Luke M.,Reecy, James M.. 2017

[11]Mapping QTL with Main Effect, Digenic Epistatic and QTL x Environment Interactions of Panicle Related Traits in Rice (Oryza sativa). Leng, Yujia,Huang, Lichao,Chen, Long,Ren, Deyong,Yang, Yaolong,Zhang, Guangheng,Hu, Jiang,Zhu, Li,Guo, Longbiao,Qian, Qian,Zeng, Dali,Leng, Yujia,Lin, Yongjun,Leng, Yujia,Lin, Yongjun,Xue, Dawei. 2017

[12]Quantitative Trait Loci Mapping for Chlorophyll Fluorescence and Associated Traits in Wheat (Triticum aestivum). Yang, De-Long,Jing, Rui-Lian,Chang, Xiao-Ping,Li, We.

[13]Bayesian Analysis for Genetic Architectures of Body Weights and Morphological Traits Using Distorted Markers in Japanese Flounder Paralichthys olivaceus. Cui, Yan,Wang, Hongwei,Liu, Haijin,Yang, Runqing,Cui, Yan,Qiu, Xuemei.

[14]QTL mapping and epistatic interaction analysis in asparagus bean for several characterized and novel horticulturally important traits. Xu, Pei,Wu, Xiaohua,Wang, Baogen,Hu, Tingting,Lu, Zhongfu,Liu, Yonghua,Qin, Dehui,Wang, Sha,Li, Guojing. 2013

[15]Genetic dissection of the introgressive genomic components from Gossypium barbadense L. that contribute to improved fiber quality in Gossypium hirsutum L.. Wang, Furong,Xu, Zhenzhen,Sun, Ran,Gong, Yongchao,Liu, Guodong,Zhang, Jingxia,Wang, Liuming,Zhang, Chuanyun,Zhang, Jun,Wang, Furong,Xu, Zhenzhen,Sun, Ran,Fan, Shoujin,Zhang, Jun.

[16]Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Mei, HW,Luo, LJ,Ying, CS,Wang, YP,Yu, XQ,Guo, LB,Paterson, AH,Li, ZK. 2003

[17]Identification of QTLs associated with physiological nitrogen use efficiency in rice. Cho, Young-Il,Jiang, Wenzhu,Chin, Joong-Hyoun,Piao, Zhongze,Cho, Yong-Gu,McCouch, Susan R.,Koh, Hee-Jong. 2007

[18]Statistical method for mapping QTLs for complex traits based on two backcross populations. Zhu ZhiHong,Yang Jian,Xu HaiMing,Hayart, Yousaf,Cao LiYong,Lou XiangYang. 2012

[19]Advanced Backcross QTL Analysis for the Whole Plant Growth Duration Salt Tolerance in Rice (Oryza sativa L.). Chai Lu,Zhang Jian,Zhang Fan,Zheng Tian-qing,Zhao Xiu-qing,Wang Wen-sheng,Xu Jian-long,Li Zhi-kang,Pan Xiao-biao,Jauhar, Ali. 2014

[20]Genome-wide response to selection and genetic basis of cold tolerance in rice (Oryza sativa L.). Zhang, Fan,Gao, Yong-Ming,Li, Zhi-Kang,Ma, Xiu-Fang,Hao, Xian-Bin. 2014

作者其他论文 更多>>