Genetic Diversity and Structure of New Inbred Rice Cultivars in China

文献类型: 外文期刊

第一作者: Xu Qun

作者: Xu Qun;Wang Cai-hong;Yu Han-yong;Yuan Xiao-ping;Wang Yi-ping;Feng Yue;Tang Sheng-xiang;Wei Xing-hua;Chen Hong

作者机构:

关键词: rice;Oryza sativa;cultivars;genetic diversity

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2012 年 11 卷 10 期

页码:

收录情况: SCI

摘要: A total of 408 inbred rice cultivars bred in the last decade were analyzed for 24 SSR markers. The results showed the genetic diversity of indica cultivars was higher than that of japonica cultivars, and the genetic diversity of new cultivars raised in recent years was lower. Among the six rice cropping regions (RCRs) in China, genetic diversity was the highest in the central rice region (RCR-II) and the southwest rice region (RCR-III). Genetic differences among subpopulations of japonica were more complex than those in indica. Differentiation among seasonal ecotypes and RCRs in indica populations was unclear, but differentiation between RCR-II and northeast rice region (RCR-V) was more distinct for japonica cultivars. Considering the North rice region (RCR-IV) has very low genetic diversity among the tested cultivars, it is important to broaden the genetic background for future cultivars in rice breeding programs.

分类号:

  • 相关文献

[1]SHALLOT-LIKE1 Is a KANADI Transcription Factor That Modulates Rice Leaf Rolling by Regulating Leaf Abaxial Cell Development. Xu, Qian,Xue, Hong-Wei,Zhang, Guang-Heng,Zhu, Xu-Dong,Qian, Qian.

[2]Development of Chromosome Segment Substitution Lines Derived from Backcross between Two Sequenced Rice Cultivars, Indica Recipient 93-11 and Japonica Donor Nipponbare. Zhu, Wenyin,Lin, Jing,Yang, Dewei,Zhao, Ling,Zhang, Yadong,Zhu, Zhen,Chen, Tao,Wang, Cailin.

[3]Genetic diversity of rice cultivars (Oryza sativa L.) in China and the temporal trends in recent fifty years. Qi, YW,Zhang, DL,Zhang, HL,Wang, MX,Sun, JL,Wei, XH,Qiu, ZG,Tang, SX,Cao, YS,Wang, XK,Li, ZC.

[4]Genetic diversity among a founder parent and widely grown wheat cultivars derived from the same origin based on morphological traits and microsatellite markers. Li, X. J.,Xu, X.,Yang, X. M.,Li, X. Q.,Liu, W. H.,Gao, A. N.,Li, L. H.,Li, X. J.,Xu, X..

[5]Analysis on Genetic Diversity and Genetic Basis of the Main Sesame Cultivars Released in China. Zhang Yan-xin,Sun Jian,Zhang Xiu-rong,Wang Lin-hai,Che Zhuo. 2011

[6]Identification and validation of a core set of microsatellite markers for genetic diversity analysis in watermelon, Citrullus lanatus Thunb. Matsum. & Nakai. Zhang, Haiying,Wang, Hui,Guo, Shaogui,Ren, Yi,Gong, Guoyi,Xu, Yong,Weng, Yiqun.

[7]Genetic diversity within Oryza rufipogon germplasms preserved in Chinese field gene banks of wild rice as revealed by microsatellite markers. Zhang, Chi-Hong,Li, Dao-Yuan,Pan, Da-Jian,Jia, Ji-Zeng,Dong, Yu-Shen.

[8]Development of a Core Set from a Large Rice Collection using a Modified Heuristic Algorithm to Retain Maximum Diversity. Chung, Jong-Wook,Zhao, Weiguo,Park, Yong-Jin,Chung, Hun-Ki,Kim, Kyu-Won,Lee, Jung-Ro,Lee, Sok-Young,Gwag, Jae-Gyun,Dixit, Anupam,Kang, Hee-Kyoung,Zhao, Weiguo,McNally, Kenneth L.,Hamilton, Ruraidh S.. 2009

[9]Detection of epistatic interactions of three QTLs for heading date in rice using single segment substitution lines. Ding, Han-Feng,Liu, Xu,Li, Run-Fang,Wang, Wen-Ying,Zhang, Y.,Zhang, Xiao-Dong,Yao, Fang-Yin,Li, Guang-Xian,Jiang, Ming-Song,Ding, Han-Feng.

[10]The effect of low water content on seed longevity. Hu, CL,Zhang, YL,Tao, M,Hu, XR,Jiang, CY. 1998

[11]The RICE MINUTE-LIKE1 (RML1) gene, encoding a ribosomal large subunit protein L3B, regulates leaf morphology and plant architecture in rice. Zheng, Ming,Wang, Yihua,Liu, Xi,Sun, Juan,Wang, Yunlong,Xu, Yang,Lv, Jia,Long, Wuhua,Zhu, Xiaopin,Jiang, Ling,Wang, Chunming,Wan, Jianmin,Guo, Xiuping,Wan, Jianmin.

[12]Antagonistic HLH/bHLH Transcription Factors Mediate Brassinosteroid Regulation of Cell Elongation and Plant Development in Rice and Arabidopsis. Zhang, Li-Ying,Bai, Ming-Yi,Zhu, Jia-Ying,Wang, Hao,Wang, Wenfei,Zhao, Jun,Yang, Hongjuan,Xu, Yunyuan,Lin, Wen-Hui,Chong, Kang,Wang, Zhi-Yong,Zhang, Li-Ying,Zhu, Jia-Ying,Wang, Hao,Wang, Wenfei,Zhao, Jun,Bai, Ming-Yi,Sun, Yu,Wang, Zhi-Yong,Wu, Jinxia,Zhang, Zhiguo,Sun, Xuehui,Lu, Tiegang,Kim, Soo-Hwan,Fujioka, Shozo.

[13]Influence of the system of rice intensification on rice yield and nitrogen and water use efficiency with different N application rates. Zhao, Limei,Wu, Lianghuan,Lu, Xinghua,Zhao, Limei,Li, Yongshan,Zhu, Defeng,Uphoff, Norman.

[14]A single nucleotide polymorphism (SNP) marker linked to the fragrance gene in rice (Oryza sativa L.). Jin, QS,Waters, D,Cordeiro, GM,Henry, RJ,Reinke, RF.

[15]Rice ragged stunt oryzavirus: role of the viral spike protein in transmission by the insect vector. Zhou, GY,Lu, XB,Lu, HJ,Lei, JL,Chen, SX,Gong, ZX.

[16]Roles of the bZIP gene family in rice. E, Z. G.,Zhang, Y. P.,Wang, L.,Wang, L.,Zhou, J. H.,Zhou, J. H.. 2014

[17]Validation of a rice specific gene, sucrose phosphate synthase, used as the endogenous reference gene for qualitative and real-time quantitative PCR detection of transgenes. Ding, JY,Jia, JW,Yang, LT,Wen, HB,Zhang, CM,Liu, WX,Zhang, DB. 2004

[18]Detection of quantitative resistance loci associated with resistance to rice false smut ( Ustilaginoidea virens) using introgression lines. Zhou, Y. -L.,Xie, X. -W.,Zhang, F.,Zhu, L. -H.,Xu, J. -L.,Gao, Y. -M.,Li, Z. -K.,Zhou, Y. -L.,Zhang, F.,Xu, J. -L.,Gao, Y. -M.,Li, Z. -K.,Wang, S.,Liu, X. -Z.. 2014

[19]A 90-day safety study of genetically modified rice expressing rhIGF-1 protein in C57BL/6J rats. Tang, Maoxue,Cheng, Wenke,Qian, Lili,Yang, Shulin,Cui, Wentao,Li, Kui,Tang, Maoxue,Cheng, Wenke,Qian, Lili,Yang, Shulin,Cui, Wentao,Li, Kui,Xie, Tingting,Yang, Daichang.

[20]Improvement of rice drought tolerance through backcross breeding: Evaluation of donors and selection in drought nurseries. Lafitte, HR,Li, ZK,Vijayakumar, CHM,Gao, YM,Shi, Y,Xu, JL,Fu, BY,Ali, AJ,Domingo, J,Maghirang, R,Torres, R,Mackill, D. 2006

作者其他论文 更多>>