Genetic analysis of morphological traits in a new, versatile, rapid-cycling Brassica rapa recombinant inbred line population

文献类型: 外文期刊

第一作者: Bagheri, Hedayat

作者: Bagheri, Hedayat;El-Soda, Mohamed;van Oorschot, Inge;Hanhart, Corrie;Keurentjes, Joost J. B.;Koornneef, Maarten;Aarts, Mark G. M.;Bagheri, Hedayat;El-Soda, Mohamed;Bonnema, Guusje;Jansen-van den Bosch, Tanja;Mank, Rolf;Meng, Lin;Wu, Jian;Koornneef, Maarten

作者机构:

关键词: Brassica rapa;recombinant inbred line population;QTL analysis;plant breeding

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2012 年 3 卷

页码:

收录情况: SCI

摘要: A recombinant inbred line (RIL) population was produced based on a wide cross between the rapid-cycling and self-compatible genotypes L58, a Caixin vegetable type, and R-o-18, a yellow sarson oil type. A linkage map based on 160 F7 lines was constructed using 100 Single nucleotide polymorphisms (SNPs), 130 AFLP (R), 27 InDel, and 13 publicly available SSR markers. The map covers a total length of 1150 centiMorgan (cM) with an average resolution of 4.3 cM/marker. To demonstrate the versatility of this new population, 17 traits, related to plant architecture and seed characteristics, were subjected to quantitative trait loci (QTL) analysis. A total of 47 QTLs were detected, each explaining between 6 and 54% of the total phenotypic variance for the concerned trait. The genetic analysis shows that this population is a useful new tool for analyzing genetic variation for interesting traits in B. rapa, and for further exploitation of the recent availability of the B. rapa whole genome sequence for gene cloning and gene function analysis.

分类号:

  • 相关文献

[1]Quantitative trait loci mapping of resistance to Laodelphax striatellus (Homoptera : Delphacidae) in rice using recombinant inbred lines. Duan, Can-Xong,Wan, Jian-Min,Zhai, Hu-Qu,Chen, Qing,Wang, Jian-Kang,Su, Ning,Lei, Cai-Lin.

[2]Isolation and Analysis of Rice Rf1-Orthologus PPR Genes Co-segregating with Rf3 in Maize. Xu, Xiang-Bo,Liu, Zhan-Xian,Zhang, Deng-Feng,Liu, Ying,Song, Wei-Bin,Li, Jian-Sheng,Dai, Jing-Rui,Xu, Xiang-Bo.

[3]Genetic dissection of a thousand-grain weight quantitative trait locus on rice chromosome 1. Yu ShouWu,Yang ChangDeng,Fan YeYang,Zhuang JieYun,Li XiMing.

[4]Genetic dissection of seed vigour traits in maize (Zea mays L.) under low-temperature conditions. Shi, Yong,Li, Guohui,Tian, Zhiqiang,Wang, Zhiyong,Wang, Xiaobo,Zhu, Yuguang,Chen, Yanhui,Zhang, Xin,Ku, Lixia,Shi, Yong,Li, Guohui,Tian, Zhiqiang,Wang, Zhiyong,Wang, Xiaobo,Zhu, Yuguang,Chen, Yanhui,Zhang, Xin,Ku, Lixia,Guo, Shulei,Qi, Jianshuang.

[5]QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Fu-Ding Sun,Jian-Hong Zhang,Shu-Fang Wang,Wan-Kui Gong,Yu-Zhen Shi,Ai-Ying Liu,Jun-Wen Li,Ju-Wu Gong,Hai-Hong Shang,You-Lu Yuan.

[6]QTL Mapping for Adult Plant Resistance to Powdery Mildew in Italian Wheat cv. Strampelli. Asad Muhammad Azeem,BAI Bin,LAN Cai-xia,YAN Jun,XIA Xian-chun,ZHANG Yong,HE Zhong-hu. 2013

[7]SSR-based genetic mapping and QTL analysis for timing of spring bud flush, young shoot color, and mature leaf size in tea plant (Camellia sinensis). Tan, Li-Qiang,Wang, Li-Yuan,Xu, Li-Yi,Wu, Li-Yun,Zhang, Cheng-Cai,Wei, Kang,Bai, Pei-Xian,Li, Hai-Lin,Cheng, Hao,Tan, Li-Qiang,Xu, Li-Yi,Peng, Min,Qi, Gui-Nian,Wang, Li-Yuan,Wu, Li-Yun,Zhang, Cheng-Cai,Wei, Kang,Bai, Pei-Xian,Li, Hai-Lin,Cheng, Hao. 2016

[8]Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.). Pandey, Manish K.,Qiao, Lixian,Feng, Suping,Khera, Pawan,Wang, Hui,Guo, Baozhu,Pandey, Manish K.,Khera, Pawan,Varshney, Rajeev K.,Pandey, Manish K.,Qiao, Lixian,Feng, Suping,Khera, Pawan,Wang, Hui,Culbreath, Albert K.,Guo, Baozhu,Wang, Ming Li,Tonnis, Brandon,Barkley, Noelle A.,Qiao, Lixian,Feng, Suping,Wang, Hui,Wang, Jianping,Holbrook, C. Corley. 2014

[9]Construction of an ultrahigh-density genetic linkage map for Jatropha curcas L. and identification of QTL for fruit yield. Xia, Zhiqiang,Zhang, Shengkui,Wen, Mingfu,Lu, Cheng,Sun, Yufang,Zou, Meiling,Wang, Wenquan,Xia, Zhiqiang,Zhang, Shengkui,Zou, Meiling. 2018

[10]QTLs and candidate genes for chlorate resistance in rice (Oryzasativa L.). Teng, Sheng,Tian, Chaoguang,Chen, Mingsheng,Zeng, Dali,Guo, Longbiao,Zhu, Lihuang,Han, Bin,Qian, Qian. 2006

[11]Mapping of a major resistance gene to the brown planthopper in the rice cultivar Rathu Heenati. Sun, LH,Su, CC,Wang, CM,Zhai, HQ,Wan, JM. 2005

[12]A High-Throughput Standard PCR-Based Genotyping Method for Determining Transgene Zygosity in Segregating Plant Populations. Geng, Lige,Deng, Dewayne D.,Wubben, Martin J.,Jenkins, Johnie N.,McCarty, Jack C., Jr.,Abdurakhmonov, Ibrokhim. 2017

[13]Detection and analysis of QTLs for ferrous iron toxicity tolerance in rice, Oryza sativa L.. Wan, JL,Zhai, HQ,Wan, JM,Ikehashi, H. 2003

[14]The genetics of phytate and phosphate accumulation in seeds and leaves of Arabidopsis thaliana, using natural variation. Bentsink, L,Yuan, K,Koornneef, M,Vreugdenhil, D. 2003

[15]Genetic mapping of yield traits using RIL population derived from Fuchuan Dahuasheng and ICG6375 of peanut (Arachis hypogaea L.). Chen, Yuning,Ren, Xiaoping,Zheng, Yanli,Zhou, Xiaojing,Huang, Li,Yan, Liying,Jiao, Yongqing,Chen, Weigang,Huang, Shunmou,Wan, Liyun,Lei, Yong,Liao, Boshou,Huai, Dongxin,Wei, Wenhui,Jiang, Huifang.

[16]QTL analysis for chalkiness of rice and fine mapping of a candidate gene for qACE9. Gao, Yang,Liu, Chaolei,Li, Yuanyuan,Zhang, Anpeng,Dong, Guojun,Xie, Lihong,Zhang, Bin,Ruan, Banpu,Hong, Kai,Zeng, Dali,Guo, Longbiao,Qian, Qian,Gao, Zhenyu,Gao, Yang,Xue, Dawei. 2016

[17]Functional markers in wheat: current status and future prospects. Liu, Yanan,He, Zhonghu,Xia, Xianchun,He, Zhonghu,Appels, Rudi.

[18]Crop Wild Relatives-Undervalued, Underutilized and under Threat?. Ford-Lloyd, Brian V.,Armstrong, Susan J.,Kell, Shelagh P.,Maxted, Nigel,Schmidt, Markus,Barazani, Oz,Hadas, Rivka,Engels, Jan,Hammer, Karl,Khoshbakht, Korous,Kang, Dingming,Li, Yinghui,Qiu, Lijuan,Long, Chunlin,Lu, Bao-Rong,Ma, Keping,Ge, Song,Wei, Wei,Viet Tung Nguyen,Zhang, Zongwen.

[19]Genetic and comparative genomics mapping reveals that a powdery mildew resistance gene Ml3D232 originating from wild emmer co-segregates with an NBS-LRR analog in common wheat (Triticum aestivum L.). Guan, Haiying,Li, Jingting,Zhu, Jie,Xie, Chaojie,Yang, Tsomin,Sun, Qixin,Liu, Zhiyong,Zhang, Hongtao,Guan, Haiying,Li, Jingting,Zhu, Jie,Xie, Chaojie,Yang, Tsomin,Sun, Qixin,Liu, Zhiyong,Zhang, Hongtao,Guan, Haiying,Li, Jingting,Zhu, Jie,Xie, Chaojie,Yang, Tsomin,Sun, Qixin,Liu, Zhiyong,Zhang, Hongtao,Guan, Haiying,Li, Jingting,Zhu, Jie,Xie, Chaojie,Yang, Tsomin,Sun, Qixin,Liu, Zhiyong,Zhou, Yilin,Duan, Xiayu.

[20]A genome-wide survey with different rapeseed ecotypes uncovers footprints of domestication and breeding. Wei, Dayong,Cui, Yixin,He, Yajun,Ding, Yijuan,Li, Jiana,Qian, Wei,Wei, Dayong,Xiong, Qing,Qian, Lunwen,Tong, Chaobo,Lu, Guangyuan,Jung, Christian.

作者其他论文 更多>>