Estimation of rice seedling growth traits with an end-to-end multi-objective deep learning framework
文献类型: 外文期刊
第一作者: Ye, Ziran
作者: Ye, Ziran;Tan, Xiangfeng;Dai, Mengdi;Chen, Xuting;Kong, Dedong;Lin, Yue;Nie, Pengcheng;Ruan, Yunjie;Ruan, Yunjie
作者机构:
关键词: growth traits; fresh weight; rice seedling; deep learning; convolution neural network
期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.6; 五年影响因子:6.8 )
ISSN: 1664-462X
年卷期: 2023 年 14 卷
页码:
收录情况: SCI
摘要: In recent years, rice seedling raising factories have gradually been promoted in China. The seedlings bred in the factory need to be selected manually and then transplanted to the field. Growth-related traits such as height and biomass are important indicators for quantifying the growth of rice seedlings. Nowadays, the development of image-based plant phenotyping has received increasing attention, however, there is still room for improvement in plant phenotyping methods to meet the demand for rapid, robust and low-cost extraction of phenotypic measurements from images in environmentally-controlled plant factories. In this study, a method based on convolutional neural networks (CNNs) and digital images was applied to estimate the growth of rice seedlings in a controlled environment. Specifically, an end-to-end framework consisting of hybrid CNNs took color images, scaling factor and image acquisition distance as input and directly predicted the shoot height (SH) and shoot fresh weight (SFW) after image segmentation. The results on the rice seedlings dataset collected by different optical sensors demonstrated that the proposed model outperformed compared random forest (RF) and regression CNN models (RCNN). The model achieved R-2 values of 0.980 and 0.717, and normalized root mean square error (NRMSE) values of 2.64% and 17.23%, respectively. The hybrid CNNs method can learn the relationship between digital images and seedling growth traits, promising to provide a convenient and flexible estimation tool for the non-destructive monitoring of seedling growth in controlled environments.
分类号:
- 相关文献
作者其他论文 更多>>
-
Yield prediction through UAV-based multispectral imaging and deep learning in rice breeding trials
作者:Zhou, Hongkui;Lou, Weidong;Gu, Qing;Ye, Ziran;Hu, Hao;Zhang, Xiaobin;Huang, Fudeng
关键词:UAV; Yield prediction; Multispectral imaging; Deep learning; Rice breeding
-
Grapevine rootstock genotypes shape the functional composition of phyllosphere microbiome
作者:Zhang, Sihai;Lin, Lefeng;Shen, Yi;Liu, Mengmeng;Pan, Xuejun;Wang, Ruipu;Liu, Mengmeng;Pan, Xuejun;Wang, Ruipu;Fang, Xianghua;Tan, Xiangfeng
关键词:Grapevine; Rootstock genotypes; Microbiome; Microbial genes; Metagenomic sequencing
-
Rhizosphere-triggered viral lysogeny mediates microbial metabolic reprogramming to enhance arsenic oxidation
作者:Song, Xinwei;Wang, Yiling;Zhao, Kankan;Tang, Xianjin;Xu, Jianming;Ma, Bin;Song, Xinwei;Wang, Yiling;Zhao, Kankan;Ma, Bin;Song, Xinwei;Wang, Yiling;Wang, Youjing;Zhao, Kankan;Tong, Di;Tang, Xianjin;Xu, Jianming;Ma, Bin;Wang, Youjing;Tong, Di;Gao, Ruichuan;Li, Fangbai;Lv, Xiaofei;Kong, Dedong;Ruan, Yunjie;Ruan, Yunjie;Wang, Mengcen;Luo, Yongming;Zhu, Yongguan
关键词:
-
Effects of Al2O3 Doping on Microstructure and Wear Behavior of Plasma-Sprayed CoCrAlTaY-Al2O3 Cermet Coatings
作者:Lin, Yue;Xue, Zhaolu;Huang, Wen;Zhang, Shihong;Huang, Wen
关键词:Al2O3 doping; atmospheric plasma spraying; CoCrAlTaY coating; mechanical properties; wear behavior
-
Metagenomics reveal the mechanisms of integrated heterotrophic and sulfur autotrophic denitrification (HSAD) using PBAT/starch as carbon source
作者:Deng, Yale;Li, Junchi;Hu, Yiming;Ruan, Yunjie;Li, Junchi;Hu, Yiming;Chen, Guangsuo;Ruan, Yunjie;Deng, Yale;Taherzadeh, Mohammad J.;Lu, Huifeng;Kong, Dedong;Ma, Bin
关键词:Heterotrophic sulfur autotrophic denitrification; Salinity; Metagenomics; Metatranscriptomics; Functional genes
-
Tracking and Treating Fungal Contamination in Indoor-Growing Barley Sprouts
作者:Kong, Dedong;Dai, Mengdi;Ye, Ziran;Luo, Yu;Chen, Xuting;Tan, Xiangfeng
关键词:barley sprout; fungal contamination; indoor farming; mycobiome; ozone water; seed endophytes
-
Analysis of lettuce transcriptome reveals the mechanism of different light/dark cycle in promoting the growth and quality
作者:Dai, Mengdi;Tan, Xiangfeng;Ye, Ziran;Chen, Xuting;Kong, Dedong;Zhang, Yi;Ruan, Yunjie;Ruan, Yunjie;Ma, Bin;Ma, Bin
关键词:Lactuca sativa; transcriptome; L/D cycle; growth; quality