The Phosphoproteomic Response of Rice Seedlings to Cadmium Stress

文献类型: 外文期刊

第一作者: Zhong, Min

作者: Zhong, Min;Li, Sanfeng;Huang, Fenglin;Qiu, Jiehua;Zhang, Jian;Sheng, Zhonghua;Tang, Shaoqing;Wei, Xiangjin;Hu, Peisong;Zhong, Min;Huang, Fenglin

作者机构:

关键词: cadmium;rice (Oryza sativa L,);iTRAQ;phosphoproteome;post-translational modification

期刊名称:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES ( 影响因子:5.923; 五年影响因子:6.132 )

ISSN: 1422-0067

年卷期: 2017 年 18 卷 10 期

页码:

收录情况: SCI

摘要: The environmental damage caused by cadmium (Cd) pollution is of increasing concern in China. While the overall plant response to Cd has been investigated in some depth, the contribution (if any) of protein phosphorylation to the detoxification of Cd and the expression of tolerance is uncertain. Here, the molecular basis of the plant response has been explored in hydroponically raised rice seedlings exposed to 10 mu M and 100 mu M Cd2+ stress. An analysis of the seedlings' quantitative phosphoproteome identified 2454 phosphosites, associated with 1244 proteins. A total of 482 of these proteins became differentially phosphorylated as a result of exposure to Cd stress; the number of proteins affected in this way was six times greater in the 100 M Cd2+ treatment than in the 10 mu M treatment. A functional analysis of the differentially phosphorylated proteins implied that a significant number was involved in signaling, in stress tolerance and in the neutralization of reactive oxygen species, while there was also a marked representation of transcription factors.

分类号:

  • 相关文献

[1]A comprehensive quantitative phosphoproteome analysis of rice in response to bacterial blight. Hou, Yuxuan,Qiu, Jiehua,Tong, Xiaohong,Wei, Xiangjin,Huang, Shiwen,Zhang, Jian,Nallamilli, Babi R.,Wu, Weihuai. 2015

[2]Overexpression of gene OsSUI1 affects floral organ development in rice (Oryza sativa L.). Li, Li,Li, Yixing,Wang, Tiankang,Fu, Xiqin. 2018

[3]Proteome-wide lysine acetylation identification in developing rice (Oryza sativa) seeds and protein co-modification by acetylation, succinylation, ubiquitination, and phosphorylation. Meng, Xiaoxi,Lv, Yuanda,Mujahid, Hana,Peng, Zhaohua,Lv, Yuanda,Zhao, Han,Edelmann, Mariola J.,Peng, Xiaojun. 2018

[4]Comprehensive Proteomic Analysis of Lysine Acetylation in the Foodborne Pathogen Trichinella spiralis. Yang, Yong,Bai, Xue,Liu, Xiaolei,Liu, Mingyuan,Yang, Yong,Zhang, Peihao,Cai, Wei,Tong, Mingwei,Cai, Xuepeng,Cai, Xuepeng,Luo, Xuenong,Vallee, Isabelle,Zhou, Yonghua. 2018

[5]A Quantitative Acetylomic Analysis of Early Seed Development in Rice (Oryza sativa L.). Wang, Yifeng,Hou, Yuxuan,Qiu, Jiehua,Li, Zhiyong,Zhao, Juan,Tong, Xiaohong,Zhang, Jian. 2017

[6]Malonylome analysis in developing rice (Oryza saliva) seeds suggesting that protein lysine malonylation is well-conserved and overlaps with acetylation and succinylation substantially. Mujahid, Hana,Meng, Xiaoxi,Xing, Shihai,Peng, Zhaohua,Peng, Xiaojun,Wang, Cailin. 2018

[7]The Eukaryote-Like Serine/Threonine Kinase STK Regulates the Growth and Metabolism of Zoonotic Streptococcus suis. Zhang, Chunyan,Sun, Wen,Dong, Mengmeng,Liu, Wanquan,Li, Lu,Xu, Zhuofei,Zhou, Rui,Tan, Meifang,Gao, Ting,Li, Lu,Xu, Zhuofei,Zhou, Rui. 2017

[8]A comparative analysis of phosphoproteome in ovine muscle at early postmortem in relationship to tenderness. Li, Xin,Chen, Lijuan,He, Fan,Li, Meng,Zhang, Dequan,Shen, Qingwu. 2017

[9]A Comprehensive Proteomic Survey of ABA-Induced Protein Phosphorylation in Rice (Oryza sativa L.). Qiu, Jiehua,Hou, Yuxuan,Wang, Yifeng,Li, Zhiyong,Zhao, Juan,Tong, Xiaohong,Lin, Haiyan,Wei, Xiangjin,Zhang, Jian,Lin, Haiyan,Ao, Hejun. 2017

[10]An integrated proteomics reveals pathological mechanism of honeybee (Apis cerena) sacbrood disease. Han, Bin,Zhang, Lan,Feng, Mao,Fang, Yu,Li, Jianke.

[11]Phosphoproteomic Analysis of Protein Phosphorylation Networks in the Hypopharyngeal Gland of Honeybee Workers (Apis mellifera ligustica). Qi, Yuping,Fan, Pei,Hao, Yue,Han, Bin,Fang, Yu,Feng, Mao,Cui, Ziyou,Li, Jianke,Fan, Pei,Cui, Ziyou,Cui, Ziyou.

[12]In-Depth Phosphoproteomic Analysis of Royal Jelly Derived from Western and Eastern Honeybee Species. Han, Bin,Fang, Yu,Feng, Mao,Lu, Xiaoshan,Huo, Xinmei,Meng, Lifeng,Wu, Bin,Li, Jianke.

[13]Novel aspects of understanding molecular working mechanisms of salivary glands of worker honeybees (Apis mellifera) investigated by proteomics and phosphoproteomics. Feng, Mao,Fang, Yu,Han, Bin,Zhang, Lan,Lu, Xiaoshan,Li, Jianke.

[14]Brain Membrane Proteome and Phosphoproteome Reveal Molecular Basis Associating with Nursing and Foraging Behaviors of Honeybee Workers. Han, Bin,Fang, Yu,Feng, Mao,Hu, Han,Hao, Yue,Ma, Chuan,Huo, Xinmei,Meng, Lifeng,Zhang, Xufeng,Wu, Fan,Li, Jianke.

[15]Proteome and phosphoproteome analysis of honeybee (Apis mellifera) venom collected from electrical stimulation and manual extraction of the venom gland. Li, Rongli,Zhang, Lan,Fang, Yu,Han, Bin,Lu, Xiaoshan,Zhou, Tiane,Feng, Mao,Li, Jianke,Zhang, Lan. 2013

[16]Changes of proteome and phosphoproteome trigger embryo-larva transition of honeybee worker (Apis mellifera ligustica). Gala, Alemayehu,Fang, Yu,Woltedji, Dereje,Zhang, Lan,Han, Bin,Feng, Mao,Li, Jianke.

[17]The proteome and phosphoproteome of maize pollen uncovers fertility candidate proteins. Chao, Qing,Gao, Zhi-fang,Wang, Yue-feng,Mei, Ying-chang,Zhao, Biligen-gaowa,Wang, Bai-chen,Li, Zhe,Huang, Xia-he,Wang, Ying-chun,Li, Liang,Jiang, Yu-bo.

[18]iTRAQ-proteomics and bioinformatics analyses of mammary tissue from cows with clinical mastitis due to natural infection with Staphylococci aureus. Huang, Jinming,Luo, Guojing,Zhang, Zijing,Wang, Xiuge,Ju, Zhihua,Qi, Chao,Zhang, Yan,Wang, Changfa,Li, Rongling,Li, Jianbin,Yin, Weijun,Zhong, Jifeng,Luo, Guojing,Zhang, Zijing,Xu, Yinxue,Moisa, Sonia J.,Loor, Juan J.,Loor, Juan J.,Moisa, Sonia J.,Loor, Juan J.. 2014

[19]Proteomic Analysis of Differences in Fiber Development between Wild and Cultivated Gossypium hirsutum L.. Yuan Qin,Yu, Shuxun,Hengling Wei,Huiru Sun,Pengbo Hao,Hantao Wang,Junji Su,Shuxun Yu.

[20]Comparative Proteomic Analysis of Gossypium thurberi in Response to Verticillium dahliae Inoculation. Weiping Fang,Deyi Xie,Heqin Zhu,Wu Li,Zhenzhen Xu,Lirong Yang,Zhifang Li,Li Sun,Jinxia Wang,Lihong Nie,Zhongjie Tang,Shuping Lv,Fu’an Zhao,Yao Sun,Yuanming Zhao,Jianan Hou,Xiaojie Yang. 2015

作者其他论文 更多>>