Climate Clever Clovers: New Paradigm to Reduce the Environmental Footprint of Ruminants by Breeding Low Methanogenic Forages Utilizing Haplotype Variation

文献类型: 外文期刊

第一作者: Kaur, Parwinder

作者: Kaur, Parwinder;Nichols, Phillip;Revell, Clinton;Erskine, William;Kaur, Parwinder;Vercoe, Philip;Durmic, Zoey;Erskine, William;Kaur, Parwinder;Vercoe, Philip;Stefanova, Katia;Durmic, Zoey;Edwards, David;Erskine, William;Kaur, Parwinder;Appels, Rudi;Keeble-Gagnere, Gabriel;Bayer, Philipp E.;Edwards, David;Wang, Jiankang;Hirakawa, Hideki;Shirasawa, Kenta;Isobe, Sachiko N.;Stefanova, Katia;Nichols, Phillip;Revell, Clinton

作者机构:

关键词: greenhouse gas emissions;ruminant enteric methanogenesis;genetic and genomic analyses;forage crops;natural variation;selecting haplotypes

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2017 年 8 卷

页码:

收录情况: SCI

摘要: Mitigating methane production by ruminants is a significant challenge to global livestock production. This research offers a new paradigm to reduce methane emissions from ruminants by breeding climate-clever clovers. We demonstrate wide genetic diversity for the trait methanogenic potential in Australia's key pasture legume, subterranean clover (Trifolium subterraneum L.). In a bi-parental population the broadsense heritability in methanogenic potential was moderate (H-2 = 0.4) and allelic variation in a region of Chr 8 accounted for 7.8% of phenotypic variation. In a genome-wide association study we identified four loci controlling methanogenic potential assessed by an in vitro fermentation system. Significantly, the discovery of a single nucleotide polymorphism (SNP) on Chr 5 in a defined haplotype block with an upstream putative candidate gene from a plant peroxidase-like superfamily (TSub_g18548) and a downstream lectin receptor protein kinase (TSub_g18549) provides valuable candidates for an assay for this complex trait. In this way haplotype variation can be tracked to breed pastures with reduced methanogenic potential. Of the quantitative trait loci candidates, the DNA-damage-repair/toleration DRT100-like protein (TSub_g26967), linked to avoid the severity of DNA damage induced by secondary metabolites, is considered central to enteric methane production, as are disease resistance (TSub_g26971, TSub_g26972, and TSub_g18549) and ribonuclease proteins (TSub_g26974, TSub_g26975). These proteins are good pointers to elucidate the genetic basis of in vitro microbial fermentability and enteric methanogenic potential in subterranean clover. The genes identified allow the design of a suite of markers for marker-assisted selection to reduce rumen methane emission in selected pasture legumes. We demonstrate the feasibility of a plant breeding approach without compromising animal productivity to mitigate enteric methane emissions, which is one of the most significant challenges to global livestock production.

分类号:

  • 相关文献

[1]Comparison of greenhouse gas emissions of chemical fertilizer types in China. Zhan-biao Wang,Jing Chen,Shu-chun Mao,Ying-chun Han,Fu Chen,Li-feng Zhang,Ya-bing Li,Cun-dong Li.

[2]Combination of modified nitrogen fertilizers and water saving irrigation can reduce greenhouse gas emissions and increase rice yield. Li, Jianling,Li, Yu'e,Wan, Yunfan,Wang, Bin,Waqas, Muhammad Ahmed,Qin, Xiaobo,Gao, Qingzhu,Wilkes, Andreas,Cai, Weiwei,Guo, Chen,Zhou, Shouhua,Su, Rongsui. 2018

[3]Carbon flow analysis of China's agro-ecosystem from 1980 to 2013: A perspective from substance flow analysis. Liu, Yu,Wang, Can,Wang, Can,Chen, Minpeng.

[4]Greenhouse gas emissions, soil quality, and crop productivity from a mono-rice cultivation system as influenced by fallow season straw management. Liu, Wei,Hussain, Saddam,Wu, Lishu,Qin, Ziguo,Li, Xiaokun,Lu, Jianwei,Khan, Fahad,Geng, Mingjian,Cao, Weidong.

[5]Soil CO2 and N2O Emissions in Maize Growing Season Under Different Fertilizer Regimes in an Upland Red Soil Region of South China. Zhang Xu-bo,Sun Nan,Ding Xue-shan,Wang Bo-ren,Li Dong-chu,Wu Lian-hai,Li Jian-wei. 2014

[6]Biomass and biofuels in China: Toward bioenergy resource potentials and their impacts on the environment. Qin, Zhangcai,Zhuang, Qianlai,Cai, Ximing,He, Yujie,Huang, Yao,He, Yujie,Jiang, Dong,He, Yujie,Jiang, Dong,Lin, Erda,Liu, Yaling,Tang, Ya,Wang, Michael Q.. 2018

[7]Large-scale farming operations are win-win for grain production, soil carbon storage and mitigation of greenhouse gases. Zhu, Yongchang,Waqas, Muhammad Ahmed,Li, Yu'e,Wilkes, Andreas,Qin, Xiaobo,Gao, Qingzhu,Wan, Yunfan,Hasbagan, Ganjurjav,Zou, Xiaoxia,Jiang, Defeng. 2018

[8]Differences in CH4 and N2O emissions between rice nurseries in Chinese major rice cropping areas. Zhang, Yi,Jiang, Yu,Zhang, Mingqian,Zhang, Weijian,Li, Zhijie,Zhang, Xin,Deng, Aixing,Zhang, Weijian,Feng, Jinfei,Chen, Jin. 2014

[9]Coupling life-cycle assessment and the RothC model to estimate the carbon footprint of green manure-based wheat production in China. Yao, Zhiyuan,Zhang, Dabin,Yao, Pengwei,Liu, Na,Zhai, Bingnian,Huang, Donglin,Gao, Yajun,Zhao, Na,Zhang, Suiqi,Li, Yangyang,Cao, Weidong,Zhang, Dabin,Zhai, Bingnian,Huang, Donglin,Gao, Yajun.

[10]Reducing greenhouse gas emissions from a wheat-maize rotation system while still maintaining productivity. Li, Jianzheng,Wang, Yingchun,Wang, Daolong,Wang, Ligang,Gao, Chunyu,Li, Jianzheng,Wang, Enli,Xing, Hongtao.

[11]Identification and characterization of a glossy mutant in Welsh onion (Allium fistulosum L.). Yang, Liuyi,Liu, Lecheng,Yang, Liuyi,Liu, Qianchun,Wang, Yongqin. 2017

[12]Natural variation reveals that OsSAP16 controls low-temperature germination in rice. Wang, Xiang,Zou, Baohong,Shao, Qiaolin,Cui, Yongmei,Lu, Shan,Zhang, Yan,Huang, Ji,Hua, Jian,Huang, Quansheng,Hua, Jian. 2018

[13]Somatic embryogenesis receptor-like kinase 5 in the ecotype Landsberg erecta of Arabidopsis is a functional RD LRR-RLK in regulating brassinosteroid signaling and cell death control. Wu, Wangze,Wu, Yujun,Gao, Yang,Li, Meizhen,Yin, Hongju,Lv, Minghui,Zhao, Jianxin,Li, Jia,He, Kai,Wu, Wangze. 2015

[14]The genetics of phytate and phosphate accumulation in seeds and leaves of Arabidopsis thaliana, using natural variation. Bentsink, L,Yuan, K,Koornneef, M,Vreugdenhil, D. 2003

[15]Ziziphus acidojujuba f. tortuosa DK Li, a New Forma of Sour Jujube from Shanxi Province, China. Wang, Y. K.,Sui, C. L.,Li, D. K.,Zhao, A. L.,Ren, H. Y.. 2013

[16]Identifying aluminum tolerance in rice with a molecular marker. Zhang, Peng,Zhong, Zhengzheng,Tong, Hanhua,Zhong, Kaizhen. 2017

[17]Metabolic map of mature maize kernels. Rao, Jun,Cheng, Fang,Hu, Chaoyang,Quan, Sheng,Lin, Hong,Wang, Jing,Chen, Guihua,Zhang, Dabing,Shi, Jianxin,Zhao, Xiangxiang,Alexander, Danny,Guo, Lining,Wang, Guoying,Lai, Jinsheng,Shi, Jianxin.

[18]Natural variation and gene regulatory basis for the responses of asparagus beans to soil drought. Xu, Pei,Wu, XiaoHua,Wang, BaoGen,Wu, Xinyi,Lu, Zhongfu,Li, Guojing,Xu, Pei,Li, Guojing,Moshelion, Menachem,Halperin, Ofer,Wallach, Rony,Luo, Jie. 2015

[19]Natural Variation in the Promoter of GSE5 Contributes to Grain Size Diversity in Rice. Duan, Penggen,Xu, Jinsong,Zhang, Baolan,Zhang, Guozheng,Huang, Ke,Huang, Luojiang,Xu, Ran,Li, Yunhai,Zeng, Dali,Qian, Qian,Geng, Mufan,Ge, Song,Zhang, Guozheng,Huang, Ke,Huang, Luojiang. 2017

[20]Combinations of the Ghd7, Ghd8 and Hd1 genes largely define the ecogeographical adaptation and yield potential of cultivated rice. Zhou, Xiangchun,Yan, Wenhao,Zhang, Zhanyi,Lu, Li,Han, Zhongmin,Zhao, Hu,Liu, Haiyang,Song, Pan,Hu, Yong,Shen, Guojing,He, Qin,Wang, Gongwei,Xing, Yongzhong,Zhang, Jia,Zhou, Xiangchun,Yan, Wenhao,Zhang, Zhanyi,Lu, Li,Han, Zhongmin,Zhao, Hu,Liu, Haiyang,Song, Pan,Hu, Yong,Shen, Guojing,He, Qin,Wang, Gongwei,Xing, Yongzhong,Guo, Sibin,Gao, Guoqing.

作者其他论文 更多>>