Regional distribution of nitrogen fertilizer use and N-saving potential for improvement of food production and nitrogen use efficiency in China

文献类型: 外文期刊

第一作者: Wang, Xiaobin

作者: Wang, Xiaobin;Cai, Dianxiong;Cai, Dianxiong;Hoogmoed, Willem B.;Oenema, Oene

作者机构:

关键词: nitrogen (N) fertilizer;nitrogen use efficiency;environment;grain yield

期刊名称:JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE ( 影响因子:3.638; 五年影响因子:3.802 )

ISSN: 0022-5142

年卷期: 2011 年 91 卷 11 期

页码:

收录情况: SCI

摘要: BACKGROUND: An apparently large disparity still exists between developed and developing countries in historical trends of the amounts of nitrogen (N) fertilizers consumed, and the same situation holds true in China. The situation of either N overuse or underuse has become one of the major limiting factors in agricultural production and economic development in China. The issue of food security in N-poor regions has been given the greatest attention internationally. Balanced and appropriate use of N fertilizer for enriching soil fertility is an effective step in preventing soil degradation, ensuring food security, and further contributing to poverty alleviation and rural economic development in the N-poor regions. RESULTS: Based on the China Statistical Yearbook (2007), there could be scope for improvement of N use efficiency (NUE) in N-rich regions by reducing N fertilizer input to an optimal level (<= 180 kg N ha(-1)), and also potential for increasing yield in the N-poor regions by further increasing N fertilizer supply (up to 116 kg N ha(-1)). For the N-rich regions, the average estimated potential of N saving and NUE increase could be about 15% and 23%, respectively, while for the N-poor regions the average estimated potential for yield increase could be 21% on a regional scale, when N input is increased by 13%. CONCLUSION: The study suggests that to achieve the goals of regional yield improvement, it is necessary to readjust and optimize regional distribution of N fertilizer use between the N-poor and N-rich regions in China, in combination with other nutrient management practices. (C) 2011 Society of Chemical Industry

分类号:

  • 相关文献

[1]Improving nitrogen fertilization in rice by site-specific N management. A review. Peng, Shaobing,Buresh, Roland J.,Dobermann, Achim,Huang, Jianliang,Cui, Kehui,Zhong, Xuhua,Zou, Yingbin,Tang, Qiyuan,Yang, Jianchang,Wang, Guanghuo,Liu, Yuanying,Hu, Ruifa,Zhang, Fusuo. 2010

[2]Maintaining yields and reducing nitrogen loss in rice-wheat rotation system in Taihu Lake region with proper fertilizer management. Xue, Lihong,Yu, Yingliang,Yang, Linzhang. 2014

[3]Agronomic performance of high-yielding rice variety grown under alternate wetting and drying irrigation. Yao, Fengxian,Huang, Jianliang,Cui, Kehui,Nie, Lixiao,Liu, Xiaojin,Wu, Wei,Peng, Shaobing,Xiang, Jing,Chen, Mingxia. 2012

[4]Identification and characterization of quantitative trait loci for grain yield and its components under different nitrogen fertilization levels in rice (Oryza sativa L.). Tong, Han-hua,Xing, Yong-zhong,Luo, Li-jun,Tong, Han-hua,Chen, Liang,Li, Wei-ping,Mei, Han-wei,Yu, Xing-qiao,Xu, Xiao-yan,Luo, Li-jun,Tong, Han-hua,Zhang, Shan-qing. 2011

[5]Review grain yield and nitrogen use efficiency in rice production regions in China. Che Sheng-guo,Zhao Bing-qiang,Li Yan-ting,Yuan Liang,Li Wei,Lin Zhi-an,Hu Shu-Wen,Shen Bing. 2015

[6]Nitrogen use by winter wheat and changes in soil nitrate nitrogen levels with supplemental irrigation based on measurement of moisture content in various soil layers. Guo, Zengjiang,Zhang, Yongli,Shi, Yu,Yu, Zhenwen,Zhao, Junye.

[7]Characterization of high-yield performance as affected by genotype and environment in rice. Chen, Song,Zeng, Fang-rong,Zhang, Guo-ping,Pao, Zong-zhi. 2008

[8]The changes of beta-glucan content and beta-glucanase activity in barley before and after malting and their relationships to malt qualities. Wang, JM,Zhang, GP,Chen, JX,Wu, FB. 2004

[9]Integrated crop-livestock production systems in China. Hou, F. J.,Nan, Z. B.,Lin, H. L.,Ren, J. H.,Xie, Y. Z.,Li, X. L.. 2008

[10]Analysis of genotypic and environmental effects on rice starch. 1. Apparent amylose content, pasting viscosity, and gel texture. Bao, JS,Kong, XL,Xie, JK,Xu, LJ. 2004

[11]LOCAL CLIMATE AFFECTS GROWTH AND GRAIN PRODUCTIVITY OF PRECISION HILL-DIRECT-SEEDED RICE IN SOUTH CHINA. Mo, Z. W.,Pan, S. G.,Ashraf, U.,Kanu, A. S.,Duan, M. Y.,Tian, H.,Tang, X. R.,Mo, Z. W.,Pan, S. G.,Duan, M. Y.,Tian, H.,Tang, X. R.,Li, W.,Wang, Z. M.,Kargbo, M. B.. 2017

[12]Effect of Environment and Genetic Recombination on Subspecies and Economic Trait Differentiation in the F-2 and F-3 Generations from indica-japonica Hybridization. Wang He-tong,Jin Feng,Xu Hai,Cheng Ling,Xia Ying-jun,Liu Chun-xiang,Chen Wen-fu,Xu Zheng-jin,Jiang Yi-jun,Lin Qing-shan. 2014

[13]Stray dogs as indicators of Toxoplasma gondii distributed in the environment: the first report across an urban-rural gradient in China. Yan, Chao,Yue, Cai-Ling,Wang, Dong-Hui,Zhou, Dong-Hui,Yan, Chao,Fu, Lin-Lin,Yue, Cai-Ling,Tang, Ren-Xian,Liu, Yi-Sheng,Zhang, Peng,Wang, Dong-Hui,Zheng, Kui-Yang,Lv, Liang,Shi, Na,Zeng, Ping,Zhu, Xing-Quan,Zhu, Xing-Quan. 2012

[14]Investigation of the interaction between the fate of antibiotics in aquafarms and their level in the environment. Zhong, Yuanhong,Chen, Zhi-Feng,Liu, Shuang-Shuang,Liu, Guoguang,Cai, Zongwei,Chen, Zhi-Feng,Dai, Xiaoxin,Zheng, Guangming,Zhu, Xinping,Liu, Shugui,Yin, Yi,Cai, Zongwei. 2018

[15]The dynamics of dissolved organic N in the fumigated soils. Li, Guitong,Lin, Qimei,Zhao, Xiaorong,Cao, Aocheng.

[16]Recombinase polymerase amplification (RPA) combined with lateral flow (LF) strip for detection of Toxoplasma gondii in the environment. Wu, Y. D.,Wang, Q. Q.,Zhou, C. X.,Wang, M.,Zhu, X. Q.,Zhou, D. H.,Xu, M. J.,Wang, Q. Q.,Zhou, C. X.,Zhou, C. X..

[17]Retention of virulence in a viable but nonculturable Edwardsiella tarda isolate. Du, Meng,Chen, Jixiang,Zhang, Xiaohua,Li, Aijuan,Li, Yun,Wang, Yingeng.

[18]TOXICITY TESTING OF CRUDE OIL AND FUEL OIL USING EARLY LIFE STAGES OF THE BLACK PORGY (ACANTHOPAGRUS SCHLEGELII). Shen, Anglv,Tang, Fenghua,Shen, Xinqiang,Xu, Wantu.

[19]Genotypic and environmental variation in phytic acid content and its relation to protein content and malt quality in barley. Dai, Fel,Wang, Junmei,Zhang, Saihua,Xu, Zhenzhen,Zhang, Guoping. 2007

[20]Esophageal cancer spatial and correlation analyses: Water pollution, mortality rates, and safe buffer distances in China. Zhang Xueyan,Zhuang Dafang,Jiang Dong,Ma Xin. 2014

作者其他论文 更多>>