Non-Destructive Quantitative Analysis of Azodicarbonamide Additives in Wheat Flour by High-Throughput Raman Imaging
文献类型: 外文期刊
第一作者: Wang, Xiaobin
作者: Wang, Xiaobin;Wang, Xiaobin;Zhao, Chunjiang;Wang, Xiaobin;Zhao, Chunjiang;Wang, Xiaobin;Zhao, Chunjiang;Wang, Xiaobin;Zhao, Chunjiang
作者机构:
关键词: azodicarbonamide; wheat flour; Raman imaging; image classification; quantitative model
期刊名称:POLISH JOURNAL OF FOOD AND NUTRITION SCIENCES ( 影响因子:2.736; 五年影响因子:3.039 )
ISSN: 1230-0322
年卷期: 2021 年 71 卷 4 期
页码:
收录情况: SCI
摘要: Azodicarbonamide (ADA) additives are limited or prohibited from being added to wheat flour by various countries because they may produce carcinogenic semicarbazide in humid and hot conditions. This study aimed to realize the non-destructive detection of ADA additives in wheat flour using high-throughput Raman imaging and establish a quantitative analysis model. Raman images of pure wheat flour, pure ADA, and wheat flour-ADA mixed samples were collected respectively, and the average Raman spectra of each sample were calculated. A partial least squares (PLS) model was established by using the linear combination spectra of pure wheat flour and pure ADA and the average Raman spectra of mixed samples. The regression coefficients of the PLS model were used to reconstruct the 3D Raman images of mixed samples into 2D grayscale images. Threshold segmentation was used to classify wheat flour pixels and ADA pixels in grayscale images, and a quantitative analysis model was established based on the number of ADA pixels. The results showed that the minimum detectable content of ADA in wheat flour was 100 mg/kg. There was a good linear relationship between the ADA content in the mixed sample and the number of pixels classified as ADA in the grayscale image in the range of 100 - 10,000 mg/kg, and the correlation coefficient was 0.9858. This study indicated that the combination of PLS regression coefficients with threshold segmentation had provided a non-destructive method for quantitative detection of ADA in Raman images of wheat flour-ADA mixed samples.
分类号:
- 相关文献
作者其他论文 更多>>
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
GCVC: Graph Convolution Vector Distribution Calibration for Fish Group Activity Recognition
作者:Zhao, Zhenxi;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Liu, Jintao
关键词:Fish; Feature extraction; Activity recognition; Calibration; Adhesives; Training; Convolution; Graph convolution vector calibration; fish group activity; activity feature vector calibration; fish activity dataset
-
Adaptive precision cutting method for rootstock grafting of melons: modeling, analysis, and validation
作者:Chen, Shan;Zhao, Chunjiang;Chen, Shan;Jiang, Kai;Zheng, Wengang;Jia, Dongdong;Zhao, Chunjiang;Jiang, Kai;Zheng, Wengang;Jia, Dongdong;Zhao, Chunjiang
关键词:Melon; Grafting robot; Adaptive cutting; Rootstock pith cavity; Machine vision
-
Long-range infrared absorption spectroscopy and fast mass spectrometry for rapid online measurements of volatile organic compounds from black tea fermentation
作者:Yang, Chongshan;Li, Guanglin;Zhao, Chunjiang;Fu, Xinglan;Yang, Chongshan;Jiao, Leizi;Wen, Xuelin;Lin, Peng;Duan, Dandan;Zhao, Chunjiang;Dong, Daming;Yang, Chongshan;Jiao, Leizi;Wen, Xuelin;Lin, Peng;Duan, Dandan;Dong, Daming;Dong, Chunwang
关键词:Black tea fermentation; Volatile organic compounds; Proton transfer reaction mass spectrometry; Fourier transform infrared spectroscopy; Principal component analysis; Extreme learning machine
-
Navigation line extraction algorithm for corn spraying robot based on YOLOv8s-CornNet
作者:Guo, Peiliang;Diao, Zhihua;Ma, Shushuai;He, Zhendong;Zhao, Suna;Zhao, Chunjiang;Li, Jiangbo;Zhang, Ruirui;Yang, Ranbing;Zhang, Baohua
关键词:agricultural robotics; computer vision; deep learning; navigation line extraction; network lightweight
-
An ultra-lightweight method for individual identification of cow-back pattern images in an open image set
作者:Wang, Rong;Gao, Ronghua;Li, Qifeng;Zhao, Chunjiang;Ding, Luyu;Yu, Ligen;Ma, Weihong;Wang, Rong;Zhao, Chunjiang;Gao, Ronghua;Li, Qifeng;Zhao, Chunjiang;Ding, Luyu;Yu, Ligen;Ma, Weihong;Ru, Lin
关键词:Cow-back pattern; Cow recognition; LightCowsNet; Open image set; Deep learning
-
Unveiling the hidden impact: How biodegradable microplastics influence CO 2 and CH 4 emissions and Volatile Organic Compounds (VOCs) profiles in soil ecosystems
作者:Wang, Yihao;Zhao, Chunjiang;Lu, Anxiang;Dong, Daming;Gong, Wenwen;Wang, Yihao
关键词:Biodegradable microplastics; Paddy and upland soils; Greenhouse gases; Volatile Organic Compounds; Optical gas sensor