Non-Destructive Quantitative Analysis of Azodicarbonamide Additives in Wheat Flour by High-Throughput Raman Imaging
文献类型: 外文期刊
第一作者: Wang, Xiaobin
作者: Wang, Xiaobin;Wang, Xiaobin;Zhao, Chunjiang;Wang, Xiaobin;Zhao, Chunjiang;Wang, Xiaobin;Zhao, Chunjiang;Wang, Xiaobin;Zhao, Chunjiang
作者机构:
关键词: azodicarbonamide; wheat flour; Raman imaging; image classification; quantitative model
期刊名称:POLISH JOURNAL OF FOOD AND NUTRITION SCIENCES ( 影响因子:2.736; 五年影响因子:3.039 )
ISSN: 1230-0322
年卷期: 2021 年 71 卷 4 期
页码:
收录情况: SCI
摘要: Azodicarbonamide (ADA) additives are limited or prohibited from being added to wheat flour by various countries because they may produce carcinogenic semicarbazide in humid and hot conditions. This study aimed to realize the non-destructive detection of ADA additives in wheat flour using high-throughput Raman imaging and establish a quantitative analysis model. Raman images of pure wheat flour, pure ADA, and wheat flour-ADA mixed samples were collected respectively, and the average Raman spectra of each sample were calculated. A partial least squares (PLS) model was established by using the linear combination spectra of pure wheat flour and pure ADA and the average Raman spectra of mixed samples. The regression coefficients of the PLS model were used to reconstruct the 3D Raman images of mixed samples into 2D grayscale images. Threshold segmentation was used to classify wheat flour pixels and ADA pixels in grayscale images, and a quantitative analysis model was established based on the number of ADA pixels. The results showed that the minimum detectable content of ADA in wheat flour was 100 mg/kg. There was a good linear relationship between the ADA content in the mixed sample and the number of pixels classified as ADA in the grayscale image in the range of 100 - 10,000 mg/kg, and the correlation coefficient was 0.9858. This study indicated that the combination of PLS regression coefficients with threshold segmentation had provided a non-destructive method for quantitative detection of ADA in Raman images of wheat flour-ADA mixed samples.
分类号:
- 相关文献
作者其他论文 更多>>
-
Staggered-Phase Spray Control: A Method for Eliminating the Inhomogeneity of Deposition in Low-Frequency Pulse-Width Modulation (PWM) Variable Spray
作者:Zhang, Chunfeng;Zhao, Chunjiang;Zhang, Chunfeng;Zhai, Changyuan;Zhang, Meng;Zhang, Chi;Zou, Wei;Zhao, Chunjiang;Zhang, Chunfeng;Zou, Wei;Zhai, Changyuan;Zhang, Meng;Zhao, Chunjiang
关键词:precision spray; variable spray; PWM; deposition; duty cycle; frequency
-
A novel electrochemical sensor for in situ and in vivo detection of sugars based on boronic acid-diol recognition
作者:Liu, Ke;Xu, Tongyu;Zhao, Chunjiang;Liu, Ke;Li, Aixue;Zhao, Chunjiang
关键词:Fructose; Glucose; Electrochemical biosensor; In situ; In vivo; Artificial neural network
-
Eliminating Primacy Bias in Online Reinforcement Learning by Self-Distillation
作者:Li, Jingchen;Wu, Huarui;Zhao, Chunjiang;Shi, Haobin;Hwang, Kao-Shing
关键词:Online reinforcement learning; overfitting; reinforcement learning
-
Using high-throughput phenotype platform MVS-Pheno to reconstruct the 3D morphological structure of wheat
作者:Li, Wenrui;Zhao, Chunjiang;Li, Wenrui;Wu, Sheng;Wen, Weiliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Xiao, Pengliang;Guo, Xinyu;Zhao, Chunjiang;Li, Wenrui;Wu, Sheng;Wen, Weiliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Xiao, Pengliang;Guo, Xinyu
关键词:3D reconstruction; plant morphology; point cloud segmentation; Wheat
-
Dynamic Compressive Stress Relaxation Model of Tomato Fruit Based on Long Short-Term Memory Model
作者:Ru, Mengfei;Zhao, Chunjiang;Feng, Qingchun;Sun, Na;Li, Yajun;Sun, Jiahui;Li, Jianxun;Ru, Mengfei;Feng, Qingchun;Zhao, Chunjiang
关键词:tomato; stress relaxation; machine learning; LSTM
-
Energy and environmental evaluation and comparison of a diesel-electric hybrid tractor, a conventional tractor, and a hillside mini-tiller using the life cycle assessment method
作者:Liu, Wei;Yang, Rui;Li, Li;Zhao, Chunjiang;Li, Guanglin;Zhao, Chunjiang
关键词:Agricultural machinery; Electrification; Hybrid electric tractor; Environmental impact
-
Agricultural machinery automatic navigation technology
作者:Yao, Zhixin;Zhao, Chunjiang;Zhang, Taihong;Zhao, Chunjiang;Yao, Zhixin;Zhang, Taihong
关键词: