High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges
文献类型: 外文期刊
第一作者: Cheng, Tao
作者: Cheng, Tao;Zhang, Dongyan;Cheng, Tao;Wang, Zhaoming;Zhang, Dongyan;Zhang, Gan;Yuan, Feng;Liu, Yaling;Wang, Tianyi;Ren, Weibo;Zhao, Chunjiang
作者机构:
关键词: Forage; High-throughput phenotyping; Precision identification; Sensors; Artificial intelligence; Efficient breeding
期刊名称:ARTIFICIAL INTELLIGENCE IN AGRICULTURE ( 影响因子:12.4; 五年影响因子:12.7 )
ISSN: 2097-2113
年卷期: 2025 年 15 卷 1 期
页码:
收录情况: SCI
摘要: High-throughput phenotyping (HTP) technology is now a significant bottleneck in the efficient selection and breeding of superior forage genetic resources. To better understand the status of forage phenotyping research and identify key directions for development, this review summarizes advances in HTP technology for forage phenotypic analysis over the past ten years. This paper reviews the unique aspects and research priorities in forage phenotypic monitoring, highlights key remote sensing platforms, examines the applications of advanced sensing technology for quantifying phenotypic traits, explores artificial intelligence (AI) algorithms in phenotypic data integration and analysis, and assesses recent progress in phenotypic genomics. The practical applications of HTP technology in forage remain constrained by several challenges. These include establishing uniform data collection standards, designing effective algorithms to handle complex genetic and environmental interactions, deepening the cross-exploration of phenomics-genomics, solving the problem of pathological inversion of forage phenotypic growth monitoring models, and developing low-cost forage phenotypic equipment. Resolving these challenges will unlock the full potential of HTP, enabling precise identification of superior forage traits, accelerating the breeding of superior varieties, and ultimately improving forage yield. (c) 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
分类号:
- 相关文献
作者其他论文 更多>>
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
TMVF: Trusted Multi-View Fish Behavior Recognition with correlative feature and adaptive evidence fusion
作者:Zhao, Zhenxi;Yan, Xinting;Zhao, Chunjiang;Zhou, Chao;Zhao, Zhenxi;Yan, Xinting;Zhao, Chunjiang;Zhou, Chao;Zhao, Zhenxi;Yan, Xinting;Zhao, Chunjiang;Zhou, Chao;Zhao, Zhenxi
关键词:Multi-source domain feature evidence vector; fusion; Trusted deep multi-view learning; Fish behavior recognition; Fish Behavior Recognition Dataset; Associative cross-fusion
-
An Improved iTransformer with RevIN and SSA for Greenhouse Soil Temperature Prediction
作者:Wang, Fahai;Wang, Yiqun;Chen, Wenbai;Zhao, Chunjiang
关键词:time-series prediction; iTransformer; singular spectrum analysis; reversible instance normalization; greenhouse control
-
Overcoming Challenges in Plant Biomechanics: Methodological Innovations and Technological Integration
作者:Huang, Guanmin;Li, Yuankun;Zhang, Ying;Wen, Weiliang;Zhao, Chunjiang;Guo, Xinyu
关键词:future perspectives; interdisciplinary research; mechanical properties; plant biomechanics; research challenges
-
A large language model for multimodal identification of crop diseases and pests
作者:Wang, Yiqun;Wang, Fahai;Chen, Wenbai;Lv, Bowen;Liu, Mengchen;Kong, Xiangyuan;Pan, Zhaocen;Zhao, Chunjiang;Wang, Fahai;Lv, Bowen;Liu, Mengchen
关键词:Large language model; Crop disease identification; Agricultural questions and answers; Multimodal