Characterization and precise mapping of a QTL increasing spike number with pleiotropic effects in wheat
文献类型: 外文期刊
第一作者: Deng, Shimin
作者: Deng, Shimin;Wu, Xinru;Wang, Honggang;Liu, Shubing;Wu, Yuye;Zhou, Ronghua;Jia, Jizeng
作者机构:
期刊名称:THEORETICAL AND APPLIED GENETICS ( 影响因子:5.699; 五年影响因子:5.565 )
ISSN: 0040-5752
年卷期: 2011 年 122 卷 2 期
页码:
收录情况: SCI
摘要: Tiller number (TN) and spike number per plant (SN) are key components of grain yield and/or biomass in wheat. In this study, an introgression line 05210, developed by introgression of chromosomal segments from a synthetic exotic wheat Am3 into an elite cultivar Laizhou953, showed a significantly increased TN and SN, but shorter spike length (SL) and fewer grain number per spike (GNS) than Laizhou953. To investigate the quantitative trait locus (QTL) responsible for these variations, the introgressed segments in 05210 were screened by SSR markers and one follow-up segregation population was developed from the cross 05210/Laizhou953. The population showed 3:1 segregation ratios for SN, SL and GNS, indicating that QTLs for these traits have been dissected into single Mendelian factors. Bulked segregation analysis showed that the markers located on the 4B introgressed segment were polymorphic between the two bulks. Therefore, they were further analyzed in the F(2) population to construct a linkage map. Three new QTLs, QSn.sdau-4B, QSl.sdau-4B and QGns.sdau-4B, were detected for SN, SL and GNS, respectively, which explained a large portion of the phenotypic variation (30.1-67.6%) for these traits with overlapping peaks. Correlation analysis and multiple-trait, multiple-interval mapping (MMIM) suggested pleiotropic effects of the QTL on SN, SL and GNS. Therefore, the QTL was designated as QSn.sdau-4B. By a progeny test based on F(3) families using SN, the QTL was mapped as a Mendelian factor to the proximal region of 4BL. It is a key QTL responsible for variation in spike number and size, which had not been reported previously. Thus, it is an important QTL for wheat to achieve high and stable biomass and grain yield. Dissection and mapping of this QTL as a Mendelian factor laid a solid foundation for map-based cloning of grain yield-related QTLs in wheat.
分类号:
- 相关文献
作者其他论文 更多>>
-
Pan-genome bridges wheat structural variations with habitat and breeding
作者:Jiao, Chengzhi;Hao, Chenyang;Xie, Yuxin;Zhao, Li;Li, Tian;Fu, Junjie;Hou, Jian;Liu, Hongxia;Liu, Xu;Jia, Jizeng;Mao, Long;Zhang, Xueyong;Jiao, Chengzhi;Wang, Xiue;Xie, Xiaoming;Wang, Zihao;Zhang, Yuqi;Guo, Weilong;Chen, Liyang;Garg, Vanika;Chitikineni, Annapurna;Appels, Rudi;Varshney, Rajeev K.;Dwivedi, Girish;Dwivedi, Girish;Appels, Rudi
关键词:
-
A wheat phytohormone atlas spanning major tissues across the entire life cycle provides novel insights into cytokinin and jasmonic acid interplay
作者:Yin, Huanran;Liu, Wei;Hu, Xin;Jia, Jingqi;Liu, Mengmeng;Wei, Jiaqi;Cheng, Yikeng;Gong, Xin;Li, Qiang;Yan, Wenhao;Chen, Wei;Jia, Jizeng;Gao, Lifeng;Fernie, Alisdair R.
关键词:wheat; phytohormones; metabolic regulatory network; DOF
-
Genome-wide identification of SWEET family genes and functional analysis of NtSWEET12i under drought and saline-alkali stresses in tobacco
作者:Song, Wenting;Xue, Luyao;Jin, Xiaoshan;Liu, Xiaoqing;Wu, Xinru;Cui, Mengmeng;Liu, Qianyu;Wang, Dawei;Song, Wenting;Xue, Luyao;Jin, Xiaoshan;Liu, Xiaoqing;Wu, Xinru;Cui, Mengmeng;Liu, Qianyu;Wang, Dawei;Song, Wenting;Chen, Xiaoxia
关键词:Tobacco (
Nicotiana tabacum L.);SWEET family genes;NtSWEET12i ; Drought and saline-alkali stresses -
Effect of fermentation on the structure and properties of soluble dietary fiber from peanut shells
作者:Wu, Qiong;Wu, Xinru;Wang, Zifei;Li, Zhentao;Wang, Jiaming;Liang, Bin;Dai, Yonggang
关键词:
Peanut shells;Lactobacillus plantarum ; Soluble dietary fiber; Structural characterization; Functional properties -
Integrated multi-omics reveals contrasting epigenetic patterns in leaf and root morphogenesis in Aegilops speltoides
作者:Miao, Lingfeng;Gao, Lifeng;Jia, Jizeng;Zhao, Guangyao;Miao, Lingfeng;Chen, Zhe;Guo, Weilong
关键词:Aegilops speltoides; DNA methylation; Histone modification; Transcriptional regulatory network
-
Identification and Validation of Novel Quantitative Trait Loci for Grain Hardness in Bread Wheat (Triticum aestivum L.)
作者:Hu, Wenjing;Wang, Zunjie;You, Junchao;Yong, Rui;Li, Dongshen;Gao, Zhifu;Lu, Chengbin;Hu, Wenjing;Lu, Chengbin;Jia, Jizeng
关键词:grain hardness; kompetitive allele-specific PCR; molecular breeding; quantitative trait loci; wheat
-
The wheat transcription factor Q functions in gibberellin biosynthesis and signaling and regulates height and spike length
作者:Liu, Pan;Jia, Jizeng;Zhao, Guangyao;Hu, Yanzhen;Kong, Cuizheng;Yan, Dong;Liu, Xu;Lu, Zefu;Gao, Lifeng;Xue, Shulin;Wang, Huan;Liu, Jie;Liu, Jie;Liu, Jie
关键词: