Primary analysis of QTG contribution to heterosis in upland cotton

文献类型: 外文期刊

第一作者: ZHANG XianLiang

作者: ZHANG XianLiang;LIU Fang;WANG Wei;LI ShaoHui;WANG ChunYing;ZHANG XiangDi;WANG YuHong;WANG KunBo

作者机构:

关键词: upland cotton;recombinant inbred line;quantitative trait gene;heterosis;additive epistasis

期刊名称:CHINESE SCIENCE BULLETIN ( 影响因子:1.649; 五年影响因子:1.738 )

ISSN: 1001-6538

年卷期: 2010 年 55 卷 26 期

页码:

收录情况: SCI

摘要: In this paper, we analyzed the contribution of pure DNA factors to heterosis using quantitative trait genes (QTG) in two randomly selected strains from a recombinant inbred line of Gossypium hirsutum. According to a set of QTL mapping results, combined with analysis of DNA recombinant fragment sources in the two strains and QTL association analysis with their field traits, we hypothesize a view of "dominance + overdominance + epistasis". That is, additive and additive epistasis may be the genetic basis of heterosis, and dominance, overdominance and epistasis may be the modes of heterosis action. Based on the heterosis results of this study, we also suggest a molecular mechanism for heterosis, and explain, in detail, with two randomly selected strains as examples. The male and female parent-derived additive epistatic QTLs of upper half mean length in LG01 and LG03 produced a trait variance of 2.99-3.52 compared with the female parent-derived loci. The trait of bolls per plant was controlled by two pairs of additive epistatic QTLs in LG02 and LG07, which were derived from both female and male parents. The QTLs were reciprocally interacted and produced a trait variance of 0.86. An initial concept of "super-hybrid cotton" was raised according to the nature of additive effect, that is genetic stability.

分类号:

  • 相关文献

[1]Identification of stable quantitative trait loci (QTLs) for fiber quality traits across multiple environments in Gossypium hirsutum recombinant inbred line population. Muhammad Jamshed,Fei Jia,Juwu Gong,;Koffi Kibalou Palanga,Yuzhen Shi,Junwen Li,Haihong Shang,Aiying Liu,Tingting Chen,Zhen Zhang,Juan Cai,Qun Ge,Zhi Liu,Quanwei Lu,Xiaoying Deng,Yunna Tan,Harun or Rashid,Zareen Sarfraz,Murtaza Hassan,Wankui Gong,Youlu Yuan. 2016

[2]Genetic Analysis and QTL Detection on Fiber Traits Using Two Recombinant Inbred Lines and Their Backcross Populations in Upland Cotton. Lianguang Shang,Yumei Wang,Xiaocui Wang,Fang Liu,Abdugheni Abduweli,Shihu Cai,Yuhua Li,Lingling Ma,Kunbo Wang,Jinping Hua. 2016

[3]Main Effect QTL with Dominance Determines Heterosis for Dynamic Plant Height in Upland Cotton. Lianguang Shang,Lingling Ma,Yumei Wang,Ying Su,Xiaocui Wang,Yuhua Li,Abdugheni Abduweli,Shihu Cai,Fang Liu,Kunbo Wang,Jinping Hua. 2016

[4]Partial Dominance, Overdominance, Epistasis and QTL by Environment Interactions Contribute to Heterosis in Two Upland Cotton Hybrids. Shang, Lianguang,Cai, Shihu,Wang, Xiaocui,Li, Yuhua,Abduweli, Abdugheni,Hua, Jinping,Wang, Yumei. 2016

[5]Improvement of combining ability for restorer lines with the identified SSR markers in hybrid rice breeding. Liu, XC,Chen, SG,Chen, JS,Ishiki, KS,Wang, WX,Yu, LQ.

[6]Genetic analysis of maize kernel thickness by quantitative trait locus identification. Wen, G. Q.,Liu, X. H.,Liao, C. M.. 2015

[7]Quantitative trait locus analysis for ear height in maize based on a recombinant inbred line population. Zhang, H. M.,Wu, X. P.,Liu, X. H.,Sun, Y.,Li, Z. Q.,Zhang, H. M.,Wu, X. P.,Sun, Y.,Li, Z. Q.. 2014

[8]Dissection of component QTL expression in yield formation in rice. Guo, LB,Xing, YZ,Mei, HW,Xu, CG,Shi, CH,Wu, P,Luo, LJ. 2005

[9]QTL mapping for ear length and ear diameter under different nitrogen regimes in maize. Zhang, Hongmei,Li, Runzhi,Zheng, Zuping,Li, Zhong,He, Chuan,Liu, Daihui,Luo, Yangchun,Zhang, Guoqin,Liu, Xiaohong,Tan, Zhenbo,Zhang, Hongmei. 2010

[10]Validating a segment on the short arm of chromosome 6 responsible for genetic variation in the hull silicon content and yield traits of rice. Dai, Wei-Min,Zhang, Ke-Qin,Wu, Ji-Rong,Wang, Lei,Duan, Bin-Wu,Zheng, Kang-Le,Zhuang, Jie-Yun,Dai, Wei-Min,Cai, Run,Dai, Wei-Min. 2008

[11]Effect of high-molecular-weight glutenin allele, Glu-B1d, from synthetic hexaploid wheat on wheat quality parameters and dry, white Chinese noodle-making quality. Chen, Fang,Tang, Yonglu,Yang, Wuyun,Wu, Yuanqi,Li, Chaosu,Li, Jun,Zou, Yuchun,Mares, Daryl. 2010

[12]Effect of Environment and Genetic Recombination on Subspecies and Economic Trait Differentiation in the F-2 and F-3 Generations from indica-japonica Hybridization. Wang He-tong,Jin Feng,Xu Hai,Cheng Ling,Xia Ying-jun,Liu Chun-xiang,Chen Wen-fu,Xu Zheng-jin,Jiang Yi-jun,Lin Qing-shan. 2014

[13]High-Density SNP Map Construction and QTL Identification for the Apetalous Character in Brassica napus L.. Wang, Xiaodong,Yu, Kunjiang,Li, Hongge,Peng, Qi,Chen, Feng,Zhang, Wei,Chen, Song,Hu, Maolong,Zhang, Jiefu,Wang, Xiaodong,Zhang, Jiefu,Chen, Feng. 2015

[14]Genotype x environment interactions for chilling tolerance of rice recombinant inbred lines under different low temperature environments. Jiang, Wenzhu,Lee, Joohyun,Chu, Sang-Ho,Ham, Tae-Ho,Woo, Mi-Ok,Cho, Young-Il,Koh, Hee-Jong,Jiang, Wenzhu,Lee, Joohyun,Chu, Sang-Ho,Ham, Tae-Ho,Woo, Mi-Ok,Cho, Young-Il,Koh, Hee-Jong,Chin, Joong-Hyoun,Han, Longzhi,Xuan, Yingshi,Yuan, Donglin,Xu, Furong,Dai, Luyuan,Yea, Jong-Doo.

[15]Mapping of Quantitative Trait Loci for Contents of Macro- and Microelements in Milled Rice (Oryza sativa L.). Yu, Yong-Hong,Shao, Ya-Fang,Liu, Jie,Fan, Ye-Yang,Sun, Cheng-Xiao,Cao, Zhao-Yun,Zhuang, Jie-Yun.

[16]QTL mapping for developmental behavior of plant height in wheat (Triticum aestivum L.). Wang, Zhenghang,Ren, Qian,Li, Runzhi,Wang, Zhenghang,Wu, Xianshan,Ren, Qian,Chang, Xiaoping,Jing, Ruilian.

[17]Quantitative trait loci analysis of stem strength and related traits in soybean. Chen, Haifeng,Shan, Zhihui,Sha, Aihua,Wu, Baoduo,Yang, Zhonglu,Chen, Shuilian,Zhou, Rong,Zhou, Xinan.

[18]Mapping quantitative trait loci for nitrogen uptake and utilization efficiency in rice (Oryza sativa L.) at different nitrogen fertilizer levels. Dai, G. J.,Zhang, M. L.,Jiang, H. B.,Su, Y. A.,He, N.,Ma, Z. B.,Ma, X. Q.,Hou, S. G.,Wang, Y. R.,Cheng, S. H.,Feng, Y.,Shen, X. H.,Hua, Z. T.,Hua, Z. T.. 2015

[19]Identification and characterization of quantitative trait loci for grain yield and its components under different nitrogen fertilization levels in rice (Oryza sativa L.). Tong, Han-hua,Xing, Yong-zhong,Luo, Li-jun,Tong, Han-hua,Chen, Liang,Li, Wei-ping,Mei, Han-wei,Yu, Xing-qiao,Xu, Xiao-yan,Luo, Li-jun,Tong, Han-hua,Zhang, Shan-qing. 2011

[20]QTL mapping for resistance to strip virus disease in rice. Wang, BaoXiang,Jiang, Ling,Zhang, YingXin,Zhang, WenWei,Wang, MaoQing,Cheng, XiaNian,Liu, Xi,Wan, JianMin,Zhai, HuQu,Wan, JianMin.

作者其他论文 更多>>