文献类型: 外文期刊
第一作者: Shi, Pengjun
作者: Shi, Pengjun;Yuan, Tiezheng;Liu, Xin;Huang, Huoqing;Bai, Yingguo;Yang, Peilong;Chen, Xiaoyan;Yao, Bin;Tian, Jian;Wu, Ningfeng
作者机构:
期刊名称:APPLIED AND ENVIRONMENTAL MICROBIOLOGY ( 影响因子:4.792; 五年影响因子:5.26 )
ISSN: 0099-2240
年卷期: 2010 年 76 卷 11 期
页码:
收录情况: SCI
摘要: Xylanases are utilized in a variety of industries for the breakdown of plant materials. Most native and engineered bifunctional/multifunctional xylanases have separate catalytic domains within the same polypeptide chain. Here we report a new bifunctional xylanase (XynBE18) produced by Paenibacillus sp. E18 with xylanase and beta-1,3-1,4-glucanase activities derived from the same active center by substrate competition assays and site-directed mutagenesis of xylanase catalytic Glu residues (E129A and E236A). The gene consists of 981 bp, encodes 327 amino acids, and comprises only one catalytic domain that is highly homologous to the glycoside hydrolase family 10 xylanase catalytic domain. Recombinant XynBE18 purified from Escherichia coli BL21(DE3) showed specificity toward oat spelt xylan and birchwood xylan and beta-1,3-1,4-glucan (barley beta-glucan and lichenin). Homology modeling and molecular dynamic simulation were used to explore structure differences between XynBE18 and the monofunctional xylanase XynE2, which has enzymatic properties similar to those of XynBE18 but does not hydrolyze beta-1,3-1,4-glucan. The cleft containing the active site of XynBE18 is larger than that of XynE2, suggesting that XynBE18 is able to bind larger substrates such as barley beta-glucan and lichenin. Further molecular docking studies revealed that XynBE18 can accommodate xylan and beta-1,3-1,4- glucan, but XynE2 is only accessible to xylan. These results indicate a previously unidentified structure-function relationship for substrate specificities among family 10 xylanases.
分类号:
- 相关文献
作者其他论文 更多>>
-
In vivo haploid induction in cauliflower, kale, and broccoli
作者:Wang, Guixiang;Zong, Mei;Han, Shuo;Zhao, Hong;Duan, Mengmeng;Liu, Xin;Guo, Ning;Liu, Fan
关键词:
-
High-Throughput Screening Techniques for the Selection of Thermostable Enzymes
作者:Li, Lanxue;Bai, Yingguo;Yao, Bin;Luo, Huiying;Tu, Tao;Liu, Xiaoqing
关键词:high-throughput screening; virtual screening; protein engineering; enzyme thermostability
-
Fusarium graminearum rapid alkalinization factor peptide negatively regulates plant immunity and cell growth via the FERONIA receptor kinase
作者:Wang, Yujie;Liu, Xin;Yuan, Bingqin;Chen, Xue;Zhao, Hanxi;Ali, Qurban;Zheng, Minghong;Tan, Zheng;Yao, Hemin;Zheng, Shuqing;Wu, Jingni;Xu, Jianhong;Shi, Jianrong;Wu, Huijun;Gao, Xuewen;Gu, Qin;Liu, Xin;Xu, Jianhong;Shi, Jianrong
关键词:Fusarium graminearum; rapid alkalinization factor; receptor kinase FERONIA; host immunity; plant growth
-
Recombinant production of SAG1 fused with xylanase in Pichia pastoris induced higher protective immunity against Eimeria tenella infection in chicken
作者:Liu, Chen;Wei, HanBing;Wang, Yuan;Su, Xiaoyun;Tu, Tao;Luo, Huiying;Yao, Bin;Huang, Huoqing;Zhang, Honglian;Liang, Ruiying;Ding, Jiabo;Tang, Xinming
关键词:
-
Characterization of a Novel Hyperthermophilic GH1 β-Glucosidase from Acidilobus sp. and Its Application in the Hydrolysis of Soybean Isoflavone Glycosides
作者:He, Jinjian;Li, Yuying;Sun, Xihang;Zuo, Dinghui;Wang, Mansheng;Zheng, Xia;Shi, Pengjun;Zuo, Dinghui;Yu, Pinglian
关键词:beta-glucosidase; Acidilobus sp.; thermophilic; thermostability; ethanol tolerance; isoflavone glycosides
-
Extract of Gardenia jasminoides Ellis Attenuates High-Fat Diet-Induced Glycolipid Metabolism Disorder in Rats by Targeting Gut Microbiota and TLR4/Myd88/NF-κB Pathway
作者:Lv, Chenghao;Liu, Xin;Qin, Si;Chen, Shiyun;Yi, Yuhang;Wen, Xinnian;Qin, Si;Li, Tao
关键词:crocin; Gardenia jasminoides Ellis; glycolipid metabolism disorder; gut microbiota; TLR4/Myd88/NF-kappa B pathway
-
Calmodulin-like protein MdCML15 interacts with MdBT2 to modulate iron homeostasis in apple
作者:Liu, Xiao-Juan;Liu, Xin;Zhao, Qiang;Dong, Yuan-Hua;Yao, Yu-Xin;You, Chun-Xiang;Kang, Hui;Wang, Xiao-Fei;Liu, Xiao-Juan;Xue, Yuan;Liu, Xin;Zhao, Qiang;Liu, Qiangbo
关键词: