Erythromycin Resistance of Streptococcus suis Isolates In Vivo

文献类型: 外文期刊

第一作者: Jiang Cheng-gang

作者: Jiang Cheng-gang;Cai Xue-hui;Qiu Hua-ji;Li Yan-hua;Tong Heng-min;Liu Di-qiu;Lei Lian-cheng;Sun Chang-jiang

作者机构:

关键词: Streptococcus suis;erythromycin;in vivo;resistance

期刊名称:AGRICULTURAL SCIENCES IN CHINA ( 影响因子:0.82; 五年影响因子:0.997 )

ISSN: 1671-2927

年卷期: 2009 年 8 卷 4 期

页码:

收录情况: SCI

摘要: In order to study erythromycin resistance of Streptococcus suis under high or low concentration of selective drug pressure, Streptococcus suis strain LN was isolated from a diseased pig in 2005 and showed to be susceptible to erythromycin as determined by disc diffusion and tube dilution tests. In this study, clean level rabbits were divided into three groups of six rabbits each, including a prevention dosage group, a treatment dosage group, and a control group. After injection with S. suis strain LN, erythromycin (20 mu g mL(-1)) was taken orally in the prevention dosage group, erythromycin (5 mg kg(-1) was injected intramuscularly in the treatment dosage group, and no treatment was given in the control group. S. suis with intermediate resistance to erythromycin was isolated on the 5th day after infection from the prevention dosage group (5th PDG) and on the 7th day after infection from the treatment dosage group (7th TDG). Both isolates were determined to be the constitutive macrolide-lincosamide-streptogramin B (cMLSB) resistance phenotype. The resistance gene ermB was detected in all of the isolates. The results suggested that both the 5th PDG and 7th TDG isolates had a mutation (A2372T) in the 23S rRNA gene. In addition, the 5th PDG isolates had a mutation in ribosomal protein L4 (detected as G268A) and a mutation in ribosomal protein L22 (A345C); and the 7th TDG isolates had a C insertion at site 564. Each of these mutations is considered as a possible mechanism of erythromycin resistance in S. suis strain LN. This study demonstrated that erythromycin resistance was readily induced in S. suis at a low erythromycin dose creating selective pressure in vivo. Resistance appeared to be mediated by ribosome methylation, encoded by the ermB gene.

分类号:

  • 相关文献

[1]Occurrence of erythromycin and its degradation products residues in honey. Validation of an analytical method. Zhao, Liuwei,Cao, Weirui,Xue, Xiaofeng,Wang, Miao,Wu, Liming,Yu, Linsheng.

[2]The Eukaryote-Like Serine/Threonine Kinase STK Regulates the Growth and Metabolism of Zoonotic Streptococcus suis. Zhang, Chunyan,Sun, Wen,Dong, Mengmeng,Liu, Wanquan,Li, Lu,Xu, Zhuofei,Zhou, Rui,Tan, Meifang,Gao, Ting,Li, Lu,Xu, Zhuofei,Zhou, Rui. 2017

[3]Genetic diversity and virulence of novel sequence types of Streptococcus suis from diseased and healthy pigs in China. Wang, Shujie,Gao, Mingming,An, Tongqing,Liu, Yonggang,Jin, Jiamin,Wang, Gang,Jiang, Chenggang,Tu, Yabin,Hu, Shouping,Cai, Xuehui,Li, Jinsong,Wang, Jie,Zhou, Dongsheng. 2015

[4]GAP-initiated constitutive expression of a novel plectasin-derived peptide MP1106 by Pichia pastoris and its activity against Streptococcus suis. Jiao, Jian,Feng, Xingjun,Jiao, Jian,Mao, Ruoyu,Wang, Xiumin,Zhang, Yong,Teng, Da,Wang, Jianhua,Jiao, Jian,Mao, Ruoyu,Wang, Xiumin,Zhang, Yong,Teng, Da,Wang, Jianhua. 2015

[5]Characterization of Streptococcus suis isolates from the diseased pigs in China between 2003 and 2007. Wei, Zigong,Li, Ran,Zhang, Anding,He, Hongkui,Hua, Yafeng,Xia, Jing,Chen, Huanchun,Jin, Meilin,Wei, Zigong,Li, Ran,Zhang, Anding,He, Hongkui,Hua, Yafeng,Xia, Jing,Chen, Huanchun,Jin, Meilin,Cai, Xuehui.

[6]The involvement of MsmK in pathogenesis of the Streptococcus suis serotype 2. Tan, Mei-Fang,Liu, Wan-Quan,Zhang, Chun-Yan,Zheng, Lin-Lin,Qiu, De-Xin,Li, Lu,Zhou, Rui,Tan, Mei-Fang,Gao, Ting,Li, Lu,Zhou, Rui. 2017

[7]Gene Expressions in Major Organs between Enshi Black and Landrace Pigs after Streptococcus suis Infection. Gaur, Uma,Wu, Hua-Yu,Feng, Zheng,Yang, Xue-Hai,Guo, Rui,Wu, Jun-Jing,Mei, Shu-Qi,Liu, Gui-Sheng,Gaur, Uma,Wu, Hua-Yu,Feng, Zheng,Yang, Xue-Hai,Guo, Rui,Wu, Jun-Jing,Mei, Shu-Qi,Liu, Gui-Sheng,Li, Kui,Jin, Mei-Lin.

[8](p)ppGpp synthetases regulate the pathogenesis of zoonotic Streptococcus suis. Zhu, Jiawen,Zhang, Tengfei,Su, Zhipeng,Li, Lu,Wang, Dong,Xiao, Ran,Teng, Muye,Tan, Meifang,Zhou, Rui,Zhang, Tengfei,Li, Lu,Zhou, Rui.

[9]NeuA O-acetylesterase activity is specific for CMP-activated O-acetyl sialic acid in Streptococcus suis serotype 2. Song, Lili,Zhou, Hui,Jin, Cheng,Cai, Xuehui,Li, Chunyang,Liang, Jingnan. 2011

[10]In vitro and in vivo antibacterial effect of NZ2114 against Streptococcus suis type 2 infection in mice peritonitis models. Jiao, Jian,Mao, Ruoyu,Teng, Da,Wang, Xiumin,Hao, Ya,Yang, Na,Wang, Xiao,Wang, Jianhua,Jiao, Jian,Mao, Ruoyu,Teng, Da,Wang, Xiumin,Hao, Ya,Yang, Na,Wang, Xiao,Wang, Jianhua,Feng, Xingjun. 2017

[11]Genome-wide identification of allele-specific expression in response to Streptococcus suis 2 infection in two differentially susceptible pig breeds. Wu, Huayu,Gaur, Uma,Peng, Xianwen,Li, Lianghua,Sun, Hua,Song, Zhongxu,Dong, Binke,Li, Mingbo,Mei, Shuqi,Liu, Guisheng,Wu, Huayu,Gaur, Uma,Peng, Xianwen,Li, Lianghua,Sun, Hua,Dong, Binke,Mei, Shuqi,Liu, Guisheng,Mekchay, Supamit,Wimmers, Klaus,Ponsuksili, Siriluck,Li, Kui.

[12]The 1910HK/RR two-component system is essential for the virulence of Streptococcus suis serotype 2. Yuan, Fangyan,Tan, Chen,Chen, Huanchun,Bei, Weicheng,Yuan, Fangyan,Liu, Zewen,Yang, Keli,Zhou, Danna,Liu, Wei,Duan, Zhengying,Guo, Rui,Tian, Yongxiang,Tan, Chen,Chen, Huanchun,Bei, Weicheng.

[13]Carbon adaptation influence the antagonistic ability of Pseudomonas aeruginosa against Fusarium oxysporum f. sp melonis. Wang, Yanli,Sun, Guochang,Li, Bin,Tang, Qiaomei,Chen, Xiaoling,Xie, Guanlin,Li, Hongye,Yu, Rongrong,Wu, Zhiyi. 2011

[14]In vitro and in vivo antioxidative and radioprotective capacities of polysaccharide isolated from Mesona Blumes gum. Feng, Tao,Sang, Min,Zhuang, Haining,Xu, Zhimin,Zhuang, Haining,Xu, Zhimin. 2017

[15]Gene Expression of Type VI Secretion System Associated with Environmental Survival in Acidovorax avenae subsp avenae by Principle Component Analysis. Cui, Zhouqi,Li, Bin,Kakar, Kaleem Ullah,Ojaghian, Mohammad Reza,Xie, Guanlin,Jin, Guoqiang,Wang, Yangli,Sun, Guochang. 2015

[16]Innate Immune Responses in ALV-J Infected Chicks and Chickens with Hemangioma In Vivo. Feng, Min,Xie, Tingting,Li, Zhenhui,Zhang, Xiquan,Feng, Min,Xie, Tingting,Li, Zhenhui,Zhang, Xiquan,Feng, Min,Xie, Tingting,Li, Zhenhui,Zhang, Xiquan,Dai, Manman,Shi, Meiqing. 2016

[17]Transparent Tiger barb Puntius tetrazona, a fish model for in vivo analysis of nocardial infection. Wang, F.,Liv, C.,Chang, O. Q.,Feng, Y. Y.,Jiang, L.,Li, K. B.,Wang, X. G.. 2017

[18]In-Field, In Situ, and In Vivo 3-Dimensional Elemental Mapping for Plant Tissue and Soil Analysis Using Laser-Induced Breakdown Spectroscopy. Zhao, Chunjiang,Dong, Daming,Du, Xiaofan,Zheng, Wengang. 2016

[19]Comprehensive Analysis of Tiamulin Metabolites in Various Species of Farm Animals Using Ultra-High-Performance Liquid Chromatography Coupled to Quadrupole/Time-of-Flight. Sun, Feifei,Zhang, Huiyan,Wang, Zhanhui,Shen, Jianzhong,Zhang, Suxia,Cao, Xingyuan,Sun, Feifei,Zhang, Huiyan,Wang, Zhanhui,Shen, Jianzhong,Zhang, Suxia,Cao, Xingyuan,Yang, Shupeng,Zhou, Jinhui,Li, Yi,Zhang, Jinzhen,Jin, Yue,Yang, Shupeng,Zhou, Jinhui,Li, Yi,Zhang, Jinzhen,Jin, Yue,Li, Yanshen.

[20]ZIP restores estrogen receptor expression and response to Tamoxifen in estrogen receptor negative tumors. Zhu, Ning,Miao, Ruidong,Du, Yuping,Yang, Jinbo,Zhang, Jing,Qin, Xiaodong.

作者其他论文 更多>>