Expression of jasmonic ethylene responsive factor gene in transgenic poplar tree leads to increased salt tolerance

文献类型: 外文期刊

第一作者: Li, Yiliang

作者: Li, Yiliang;Su, Xiaohua;Zhang, Bingyu;Huang, Qinjun;Zhang, Xianghua;Li, Yiliang;Su, Xiaohua;Zhang, Bingyu;Huang, Qinjun;Zhang, Xianghua;Li, Yiliang;Huang, Rongfeng

作者机构:

关键词: genetic transformation;JERFs gene;Populus alba x P. berolinensis

期刊名称:TREE PHYSIOLOGY ( 影响因子:4.196; 五年影响因子:4.727 )

ISSN: 0829-318X

年卷期: 2009 年 29 卷 2 期

页码:

收录情况: SCI

摘要: The stress resistance of plants call be enhanced by regulating the expression Of multiple downstream genes associated with stress resistance. We used the Agrobacterium method to transfer the tomato jasmonic ethylene responsive factors (JEREs) gene that encodes the ethylene responsive factor (ERF) like transcription factor to the genome of it hybrid poplar (Populus alba x Populus berolinensis). Eighteen resistant plants were obtained, of which 13 were identified by polymerase chain reaction (PCR), reverse transcriptase PCR and Southern blot analyses as having incorporated the JERFs gene and able to express it at the transcriptional level. Salinity tests were conducted in it greenhouse with 0, 100, 200 and 300 mM NaCl. In the absence of NaCl, the transgenic plants were significantly taller than the control plants, but no statistically significant differences in the concentrations of proline and chlorophyll were observed. With increasing salinity, the extent of damage was significantly less in transgenic plants than that in control plants, and the reductions ill height, basal diameter and biomass were less in transgenic plants than those in control plants. At 200 and 300 mM NaCl concentrations, transgenic plants were 128.9%, and 98.8% taller, respectively, and had 199.8% and 113.0% more dry biomass, respectively, than control plants. The saline-induced reduction in leaf water content and increase in root/crown ratio were less in transgenic plants than in control plants. Foliar proline concentration increased more in response to salt treatment in transgenic plants than in control plants. Foliar Na(+) concentration was higher in transgenic plants than in control plants. In the coastal area in Panjin of Liaoning where the total soil salt concentration is 0.3%, a salt tolerance trial of transgenic plants indicated that 3-year-old transgenic plants were 14.5% and 33.6% taller than the control plants at two field sites. The transgenic plants at the two field sites were growing vigorously, had dark green leaves and showed no symptoms of salt damage, implying that the JEREs gene enhanced their salt tolerance.

分类号:

  • 相关文献

[1]QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Fu-Ding Sun,Jian-Hong Zhang,Shu-Fang Wang,Wan-Kui Gong,Yu-Zhen Shi,Ai-Ying Liu,Jun-Wen Li,Ju-Wu Gong,Hai-Hong Shang,You-Lu Yuan.

[2]Genetically Transformed Strawberry (Fragaria x ananassa Duch.) with Cold-Inducible Transcription Factor CBF1. Jin, W. M.,Dong, J.,Liu, Y.,Zhang, Y. P.,Pan, Q. H.. 2009

[3]Improved Resistance to Cucumber mosaic virus in Petunia Transformed with Non-Cytotoxic Pokeweed Antiviral Protein Gene. Li, Yu,Chen, Dinghu,Wang, Xifeng,Feng, Hui,Chen, Dinghu. 2013

[4]Research Progress on Tissue Culture and Genetic Transformation of Kenaf (Hibiscus cannabinus). An, Xia,Jin, Guanrong,Ma, GuangYing,Jin, Liang,Luo, Xiahong,Chen, Changli,Shi, Xiaohua,Li, Wenlue,Zhu, Guanlin,Zhang, Jingyu,Dai, Lunjin,Zhou, Jun,Wei, Wei,Chen, Cong,Deng, Gang. 2017

[5]Stable Expression of Basic Fibroblast Growth Factor in Chloroplasts of Tobacco. Wang, Yun-Peng,Wei, Zheng-Yi,Zhong, Xiao-Fang,Lin, Chun-Jing,Zhang, Yu-Ying,Liu, Yan-Zhi,Xing, Shao-Chen,Cai, Yu-Hong,Ma, Jian,Zhang, Yu-Ying. 2016

[6]Expression of the B Subunit of Escherichia coli Heat-Labile Enterotoxin in Transformed Bombyx mori BmN Cells. Zhou, Wen-Lin,Cao, Jin-Ru,Ye, Ai-Hong,Weng, Hong-Biao,He, Li-Hua,Wang, Yong-Qiang,Gong, Cheng-Liang,Xue, Ren-Yu,Cao, Guang-Li,Gong, Cheng-Liang,Xue, Ren-Yu,Cao, Guang-Li. 2012

[7]Transformation of a Novel Drought-Response Transcription Factor Gene PeDREB2b into White Clover via Soaking Seeds with Agrobacterium tumefaciens. Lei, J. -l.,Wang, D.,Cao, H.,Xie, L. -s.,Wu, Y. -m.,Liu, S.,Huang, D. -g.. 2012

[8]In planta soybean transformation technologies developed in China: Procedure, confirmation and field performance. Hu, CY,Wang, LZ. 1999

[9]PEG-Mediated Genetic Transformation of Fusarium oxysporum f. sp conglutinans to Study Pathogenesis in Cabbage. Zhang, Wei,Feng, Jianhai,Yan, Hong,Li, Xinghong,Yan, Jiye,Zhao, Wensheng,Huang, Jinguang,Feng, Jianhai,Yang, Laying. 2014

[10]Development of glyphosate-tolerant transgenic cotton plants harboring the G2-aroA gene. Zhang Xiao-bing,Tang Qiao-ling,Wang Xu-jing,Wang Zhi-xing,Zhang Xiao-bing. 2017

[11]Overexpression of Vitreoscilla hemoglobin increases waterlogging tolerance in Arabidopsis and maize. Du, Hewei,Shen, Xiaomeng,Zhang, Zuxin,Du, Hewei,Huang, Min,Du, Hewei,Zhang, Zuxin,Huang, Yiqin. 2016

[12]Generation of Transgenic Maize by Two Germinating Seed Transformation Methods. Liang, Xue-lian,Liang, Xue-lian,Du, Jian-zhong,Hao, Yao-shan,Cui, Gui-mei,Wang, Yi-xue,Wang, Xiao-qing,Zhang, Huan-huan,Sun, Yi,Sun, Dan-qiong. 2016

[13]Genetic transformation of tobacco with the trehalose synthase gene from Grifola frondosa Fr. enhances the resistance to drought and salt in tobacco. Zhang, SZ,Yang, BP,Feng, CL,Tang, HL. 2005

[14]Establishment of a genetic transformation system for maize inbred P9-10. Zhou, FY,Wang, GY,Xie, YJ,Cui, HZ,Guo, SD,Dai, JR.

[15]Integration and Characterization of T-DNA Insertion in Upland Cotton. Xiaojie YANG,Fuguang LI,Xueyan ZHANG,Kun LIU,Qianhua WANG,Chaojun ZHANG,Chuanliang LIU,Wei ZHU,Guofang SHAN,Chee-Kok CHIN,Weiping FANG. 2013

[16]Current status of genetic transformation technology developed in cucumber (Cucumis sativus L.). Wang Shun-li,Ku, Seong Sub,Choi, Pil Son,Ye Xing-guo,He Cong-fen,Kwon, Suk Yoon. 2015

[17]Agrobacterium-mediated transformation of the apple rootstock Malus micromalus Makino with the ROLC gene. Zhang, Zhen,Sun, Aijun,Cong, Yu,Sheng, Bingcheng,Yao, Quanhong,Cheng, Zong-Ming. 2006

[18]Genetic transformation of wheat: current status and future prospects. Li, Jiarui,Ye, Xingguo,Du, Lipu,Xu, Huijun,Li, Jiarui,An, Baoyan. 2012

[19]Efficient auto-excision of a selectable marker gene from transgenic citrus by combining the Cre/loxP system and ipt selection. Zou, Xiuping,Peng, Aihong,Xu, Lanzhen,Liu, Xiaofeng,Lei, Tiangang,Yao, Lixiao,He, Yongrui,Chen, Shanchun,Zou, Xiuping,Peng, Aihong,Xu, Lanzhen,Liu, Xiaofeng,Lei, Tiangang,Yao, Lixiao,He, Yongrui,Chen, Shanchun. 2013

[20]Co-treatment with surfactant and sonication significantly improves Agrobacterium-mediated resistant bud formation and transient expression efficiency in soybean. Guo Bing-fu,Guo Bing-fu,Guo Yong,Wang Jun,Zhang Li-juan,Jin Long-guo,Hong Hui-long,Chang Ru-zheng,Qiu Li-juan,Wang Jun. 2015

作者其他论文 更多>>