D-chiro-Inositol-Enriched Tartary Buckwheat Bran Extract Lowers the Blood Glucose Level in KK-A(y) Mice

文献类型: 外文期刊

第一作者: Yao, Yang

作者: Yao, Yang;Ren, Guixing;Shan, Fang;Bian, Junsheng;Chen, Feng;Wang, Mingfu

作者机构:

关键词: Tartary buckwheat;DCI;steaming;blood glucose;antidiabetic activity

期刊名称:JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY ( 影响因子:5.279; 五年影响因子:5.269 )

ISSN: 0021-8561

年卷期: 2008 年 56 卷 21 期

页码:

收录情况: SCI

摘要: D-chiro-inositol (DCI) is an active compound in tartary buckwheat [Fagopyrum tataricum (L.) Gaench] with an insulin-like bioactivity. The present study was performed to (i) prepare DCI-enriched tartary buckwheat bran extract (TBBE), (ii) evaluate its acute toxicity in mice, and (iii) examine its blood glucose lowering activity in diabetic mice. It was found that steaming buckwheat bran in an autoclave at 1.6 MPa and 120 degrees C for 60 min could significantly enrich the DCI level in TBBE from 0.03 to 0.22% and further to 22% after passage of the TBBE through activated carbon and ion exchange resins. An acute toxicity test demonstrated that the LD50 of TBBE was >20 g/kg of body weight in mice, suggesting that TBBE was in general nontoxic and safe in mice. Male KK-A(y) mice (type 2 diabetic) and C57BL/6 mice (the control) were used to investigate the antidiabetic activity of TBBE. In KK-Ay mice, the blood glucose, plasma C-peptide, glucagon, total cholesterol, triglyceride, and blood urea nitrogen (BUN) levels were significantly higher than those in the C57BL/6 mice. In addition, KK-Ay mice showed an obvious decrease in insulin immunoreactivity in the pancreas. The present study clearly demonstrated that oral administration of DCI-enriched TBBE could lower plasma glucose, C-peptide, glucagon, triglyceride, and BUN, improve glucose tolerance, and enhance insulin immunoreactivity in KK-A(y) mice.

分类号:

  • 相关文献

[1]Antidiabetic activity of isoquercetin in diabetic KK -A(y) mice. Zhang, Rui,Yao, Yang,Wang, Yingping,Ren, Guixing. 2011

[2]Antidiabetic activity of Mung bean extracts in diabetic KK-A(y) mice. Yao, Yang,Ren, Guixing,Chen, Feng,Wang, Mingfu,Wang, Jiashi. 2008

[3]Effect of high dietary carbohydrate on growth, serum physiological response, and hepatic heat shock cognate protein 70 expression of the top-mouth culter Erythroculter ilishaeformis Bleeker. Liu, Bo,Xie, Jun,Ge, Xian-ping,Wang, Guangyu,Liu, Bo,Xie, Jun,Ge, Xian-ping,Miao, Ling-hong.

[4]Antidiabetic effects of cinnamon oil in diabetic KK-A(y) mice. Ping, Hua,Ren, Guixing,Ping, Hua,Zhang, Guijun. 2010

[5]Tartary buckwheat (Fagopyrum tataricum Gaertn.) starch, a side product in functional food production, as a potential source of retrograded starch. Gao, Jinfeng,Chao, Guimei,Wang, Pengke,Gao, Xiaoli,Feng, Baili,Kreft, Ivan,Wang, Ying,Liu, Xiaojin,Wang, Li. 2016

[6]Composition and Antioxidant Capacity of Flour and Hull Extracts from Different Tartary Buckwheat Cultivars. Gong, Xiao,Qi, Ningli,Liu, Yijun,Lin, Lijing,Huang, Maofang. 2014

[7]A novel technique for translate fagopyritols into D-chiro inositol. Bian Junsheng,Li Hongmei,Hu Junjun,Sun Qiuyan,Den Xiaoyan,Ren Guixing,Shan Fang. 2007

[8]Changes in seed growth, levels and distribution of flavonoids during tartary buckwheat seed development. Song, Chao,Xiang, Da-Bing,Yan, Lin,Song, Yue,Zhao, Gang,Wang, Yue-Hua,Zhang, Bao-Lin. 2016

[9]Low concentration of sodium bicarbonate improves the bioactive compound levels and antioxidant and alpha-glucosidase inhibitory activities of tartary buckwheat sprouts. Qin, Peiyou,Wei, Aichun,Yao, Yang,Yang, Xiushi,Dun, Baoqing,Ren, Guixing,Wei, Aichun,Zhao, Degang,Wei, Aichun,Zhao, Degang.

[10]Application of near-infrared reflectance spectroscopy to the evaluation of rutin and D-chiro-inositol contents in tartary buckwheat. Yang, Nan,Ren, Guixing.

[11]Determination of D-chiro-inositol in tartary buckwheat using high-performance liquid chromatography with an evaporative light-scattering detector. Yang, Nan,Ren, Guixing.

[12]Molecular Characterization of Genetic Diversity of Underutilized Crops: Buckwheat as an Example. Zhang, Zongwen,Zhao, Lijuan. 2013

[13]Comparative Evaluation of Quercetin, Isoquercetin and Rutin as Inhibitors of alpha-Glucosidase. Li, Yan Qin,Zhou, Feng Chao,Gao, Fei,Bian, Jun Sheng,Shan, Fang. 2009

[14]Determination of Multi-Class Mycotoxins in Tartary Buckwheat by Ultra-Fast Liquid Chromatography Coupled with Triple Quadrupole Mass Spectrometry. Ren, Guixing,Hu, Yichen,Zou, Liang,Zhao, Gang,Ren, Guixing,Zhang, Jinming. 2018

[15]The Tartary Buckwheat Genome Provides Insights into Rutin Biosynthesis and Abiotic Stress Tolerance. Zhang, Lijun,Ma, Mingchuan,Liu, Longlong,Zhou, Jianping,Nan, Chenghu,Qin, Yongjun,Cui, Lin,Liu, Huimin,Qiao, Zhijun,Zhang, Lijun,Han, Yuanhuai,Ma, Mingchuan,Liu, Longlong,Zhou, Jianping,Nan, Chenghu,Qin, Yongjun,Cui, Lin,Liu, Huimin,Qiao, Zhijun,Zhang, Lijun,Han, Yuanhuai,Ma, Mingchuan,Liu, Longlong,Zhou, Jianping,Nan, Chenghu,Qin, Yongjun,Cui, Lin,Liu, Huimin,Qiao, Zhijun,Li, Xiuxiu,Ma, Bin,Gao, Qiang,Du, Huilong,Li, Yan,Cao, Yinghao,Qi, Ming,Lu, Hongwei,Liang, Chengzhi,Li, Xiuxiu,Du, Huilong,Lu, Hongwei,Liang, Chengzhi,Han, Yuanhuai,Zhu, Yaxin,Wang, Jun. 2017

[16]Plantlet Regeneration of Tartary Buckwheat (Fagopyrum tataricum Gaertn.) in Vitro Tissue Cultures. Wang, Cheng-Long,Dong, Xue-ni,Ding, Meng-qi,Shao, Ji-Rong,Wang, Cheng-Long,Dong, Xue-ni,Ding, Meng-qi,Tang, Yi-Xiong,Wu, Yan-Min,Zhou, Mei-Liang,Zhu, Xue-Mei.

[17]In vitro digestibility and changes in physicochemical and textural properties of tartary buckwheat starch under high hydrostatic pressure. Liu, Hang,Fan, Huanhuan,Wang, Min,Li, Yunlong,Li, Hongmei,Liu, Hang,Guo, Xudan.

[18]Physicochemical and textural properties of tartary buckwheat starch after heat-moisture treatment at different moisture levels. Liu, Hang,Lv, Manman,Peng, Qiang,Wang, Min,Shan, Fang.

作者其他论文 更多>>