CO(2)H(2)O and energy exchange of an Inner Mongolia steppe ecosystem during a dry and wet year

文献类型: 外文期刊

第一作者: Wang, Yanfen

作者: Wang, Yanfen;Cui, Xiaoyong;Zhou, Xiaoqi;Niu, Haishan;Hao, Yanbin;Huang, Xiangzhong;Cui, Xiaoyong;Mei, Xurong

作者机构:

关键词: eddy covariance;evapotranspiration;carbon exchange;soil moisture

期刊名称:ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY ( 影响因子:1.674; 五年影响因子:1.845 )

ISSN: 1146-609X

年卷期: 2008 年 33 卷 2 期

页码:

收录情况: SCI

摘要: We used an eddy covariance technique to measure evapotranspiration and carbon flux over two very different growing seasons for a typical steppe on the Inner Mongolia Plateau, China. The rainfall during the 2004 growing season (344.7 mm) was close to the annual average (350.43 mm). In contrast, precipitation during the 2005 growing season was significantly lower than average (only 126 mm). The wet 2004 growing season had a higher peak evapotranspiration (4 mm day(-1)) than did the dry 2005 growing season (3.3 mm day(-1)). In 2004, latent heat flux was mainly a consumption resource for net radiation, accounting for similar to 46% of net radiation. However, sensible heat flux dominated the energy budget over the whole growing season in 2005, accounting for 60% of net radiation. The evaporative rate (LE/R(n)) dropped by a factor of four from the non-soil stress to soil water limiting conditions. Maximum half-hourly CO(2) uptake was -0.68 mg m(-2) s(-1) and maximum ecosystem exchange was 4.3 g CO(2) m(-2) day(-1) in 2004. The 2005 drought growing stage had a maximum CO(2) exchange value of only -0.22 mg m(-2) s(-1) and a continuous positive integrated-daily CO(2) flux over the entire growing season, i.e. the ecosystem became a net carbon source. Soil respiration was temperature dependent when the soil was under non-limiting soil moisture conditions, but this response declined with soil water stress. Water availability and a high vapor pressure deficit severely limited carbon fixing of this ecosystem; thus, during the growing season, the capacity to fix CO(2) was closely related to both timing and frequency of rainfall events. (c) 2007 Published by Elsevier Masson SAS.

分类号:

  • 相关文献

[1]Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China. Chen, Yang,Xia, Jiangzhou,Feng, Jinming,Wang, Kaicun,Yuan, Wenping,Chen, Yang,Xia, Jiangzhou,Liang, Shunlin,Li, Xianglan,Wang, Kaicun,Chen, Yang,Xia, Jiangzhou,Liang, Shunlin,Li, Xianglan,Wang, Kaicun,Liang, Shunlin,Feng, Jinming,Ma, Zhuguo,Zhao, Tianbao,Fisher, Joshua B.,Li, Xin,Wen, Jun,Liu, Shuguang,Miyata, Akira,Mu, Qiaozhen,Sun, Liang,Tang, Jianwei,Zhang, Qiang,Xue, Yueju,Yu, Guirui,Zha, Tonggang,Zhang, Li,Zhao, Liang,Yuan, Wenping.

[2]The response of ecosystem CO2 exchange to small precipitation pulses over a temperate steppe. Hao, Yanbin,Wang, Yanfen,Mei, Xurong,Cui, Xiaoyong.

[3]Different responses of ecosystem carbon exchange to warming in three types of alpine grassland on the central Qinghai-Tibetan Plateau. Ganjurjav, Hasbagan,Hu, Guozheng,Wan, Yunfan,Li, Yue,Gao, Qingzhu,Ganjurjav, Hasbagan,Hu, Guozheng,Wan, Yunfan,Li, Yue,Gao, Qingzhu,Danjiu, Luobu. 2018

[4]Carbon emissions and sinks in agro-ecosystems of China. Lin, ED,Li, Y,Guo, LP. 2002

[5]Legacy effects from historical grazing enhanced carbon sequestration in a desert steppe. Han, Juanjuan,Shao, Changliang,Li, Linghao,Chen, Jiquan,Shao, Changliang,Chen, Jiquan,Han, Guodong,Sun, Hailian.

[6]Comparison of multi-level water use efficiency between plastic film partially mulched and non-mulched croplands at eastern Loess Plateau of China. Gong, Daozhi,Mei, Xurong,Hao, Weiping,Wang, Hanbo,Mei, Xurong,Caylor, Kelly K..

[7]Energy balance and partitioning in partial plastic mulched and non-mulched maize fields on the Loess Plateau of China. Feng, Yu,Gong, Daozhi,Mei, Xurong,Hao, Weiping,Tang, Dahua,Cui, Ningbo,Cui, Ningbo.

[8]Carbon budget of a rainfed spring maize cropland with straw returning on the Loess Plateau, China. Hao, Weiping,Mei, Xurong,Gao, Xiang,Gu, Fengxue,Li, Haoru,Gong, Daozhi,Mao, Lili,Zhang, Zuguang.

[9]The fluxes of CO2 from grazed and fenced temperate steppe during two drought years on the Inner Mongolia Plateau, China. Wang, Y. F.,Cui, X. Y.,Hao, Y. B.,Huang, X. Z.,Mei, X. R.,Yu, G. R.,Kang, X. M.,Zhou, X. Q.. 2011

[10]Geographical statistical assessments of carbon fluxes in terrestrial ecosystems of China: Results from upscaling network observations. Zhu, Xian-Jin,Yu, Gui-Rui,He, Hong-Lin,Wang, Qiu-Feng,Chen, Zhi,Gao, Yan-Ni,Wang, Hui-Min,Shi, Pei-Li,Zhao, Feng-Hua,Fu, Yu-Ling,Wen, Xue-Fa,Liu, Ying-Chun,Zhang, Lei-Ming,Zhang, Li,Su, Wen,Li, Sheng-Gong,Sun, Xiao-Min,Wang, Yan-Fen,Liu, Ying-Chun,Zhang, Yi-Ping,Zhang, Jun-Hui,Yan, Jun-Hua,Zhou, Guang-Sheng,Jia, Bing-Rui,Chen, Shi-Ping,Xiang, Wen-Hua,Li, Ying-Nian,Zhao, Liang,Xin, Xiao-Ping,Wang, Yu-Ying,Tong, Cheng-Li.

[11]Predominance of Precipitation and Temperature Controls on Ecosystem CO2 Exchange in Zoige Alpine Wetlands of Southwest China. Hao, Yan Bin,Cui, Xiao Yong,Wang, Yan Fen,Kang, Xiao Ming,Mei, Xu Rong,Wu, Ning,Luo, Peng,Zhu, Dan. 2011

[12]On the ratio of intercellular to ambient CO2 (c(i)/c(a)) derived from ecosystem flux. Tan, Zheng-Hong,Jatoi, Muhammad Tahir,Zhao, Jun-Fu,Yang, Lian-Yan,Wu, Zhi-Xiang,Lan, Guo-Yu,Yang, Chuang,Tao, Zhong-Liang,Chen, Bang-Qian,Jatoi, Muhammad Tahir,Hughes, Alice C.,Schaefer, Douglas,Song, Liang,Zeng, Jiye,Tian, Yao-Hua. 2017

[13]Application of two remote sensing GPP algorithms at a semiarid grassland site of North China. Sun, Osbert Jianxin,Zhou, Zhiyong,Liu, Jianfeng,Han, Xingguo,Liu, Jianfeng,Liu, Jianfeng,Sun, Osbert Jianxin,Zhou, Zhiyong,Jin, Hongmei. 2011

[14]Comparison of ET partitioning and crop coefficients between partial plastic mulched and non -mulched maize fields. Gong, Daozhi,Mei, Xurong,Hao, Weiping,Wang, Hanbo,Gong, Daozhi,Mei, Xurong,Hao, Weiping,Wang, Hanbo,Mei, Xurong,Caylor, Kelly K..

[15]Temporal-spatial variation of evapotranspiration in the Yellow River Delta based on an integrated remote sensing model. Li, He,Chen, Zhongxin,Jiang, Zhiwei,Sun, Liang,Liu, Ke,Liu, Bin,Li, He,Chen, Zhongxin,Jiang, Zhiwei,Sun, Liang,Liu, Ke,Liu, Bin. 2015

[16]Effect of Deficit Irrigation on the Growth, Water Use Characteristics and Yield of Cotton in Arid Northwest China. Yang Chuanjie,Luo Yi,Sun Lin,Yang Chuanjie,Wu Na,Wu Na. 2015

[17]The Characteristics of Annual Water Consumption for Winter Wheat and Summer Maize in North China Plain. Kong, Fanlei,Shi, Leigang,Chen, Fu,Cai, Wantao. 2012

[18]Estimating high spatiotemporal resolution evapotranspiration over a winter wheat field using an IKONOS image based complementary relationship and Lysimeter observations. Yang, Guijun,Zhao, Chunjiang,Xue, Xuzhang,Yang, Guijun,Yang, Guijun,Pu, Ruiliang. 2014

[19]Surface energy fluxes and controls of evapotranspiration in three alpine ecosystems of Qinghai Lake watershed, NE Qinghai-Tibet Plateau. Zhang, Si-Yi,Li, Xiao-Yan,Zhang, Si-Yi,Li, Xiao-Yan,Zhao, Guo-Qin,Huang, Yong-Mei,Zhang, Si-Yi. 2016

[20]Response of sap flux and evapotranspiration to deficit irrigation of greenhouse pear-jujube trees in semi-arid northwest China. Feng, Yu,Cui, Ningbo,Zhao, Lu,Feng, Yu,Cui, Ningbo,Zhao, Lu,Du, Taisheng,Feng, Yu,Gong, Daozhi,Cui, Ningbo,Hu, Xiaotao.

作者其他论文 更多>>