Indices to screen for grain yield and zinc mass concentrations in aerobic rice at different soil-Zn levels

文献类型: 外文期刊

第一作者: Jiang, W.

作者: Jiang, W.;Struik, P. C.;Stomph, T. J.;Jiang, W.;Zhao, M.;Van Keulen, H.;Fan, T. Q.

作者机构:

关键词: breeding;low-zinc tolerance;Oryza sativa L.;yield index;zinc efficiency

期刊名称:NJAS-WAGENINGEN JOURNAL OF LIFE SCIENCES ( 影响因子:4.169; 五年影响因子:4.514 )

ISSN: 1573-5214

年卷期: 2008 年 55 卷 2 期

页码:

收录情况: SCI

摘要: Zinc is an important micronutrient for both crop growth and human nutrition. In rice production, yields are often reduced and Zn mass concentrations in the grains are often low when Zn is in short supply to the crop. This may result in malnutrition of people dependent on a rice-based diet. Plant breeding to enhance low-Zn tolerance might result in higher yields and nutritional quality but requires effective selection criteria embedded in physiological insight into the Zn husbandry of the crop and applicable in field evaluation of advanced breeding material or in screening of existing varieties. Using existing and newly developed low-Zn tolerance indices, this study presents the results of screening experiments carried out in high- and low-Zn soils. Sixteen accessions of aerobic rice were grown under greenhouse conditions to conceptualize the indices and 14 under field conditions to validate the indices. As the differences in soil-Zn levels in these experiments did not result in differences in grain yield, literature data were used from experiments where the soil-Zn level did have an effect on grain yield, to further check the validity of the indices. Several indices were applied to evaluate the genotypic low-Zn tolerance performance in attaining (relatively) high grain yield, high grain-Zn mass concentration, or both. The results indicate that the grain-Zn mass concentration efficiency index is different from the grain yield efficiency index and that the low-Zn tolerance indices identified superior genotypes best. Amongst the indices tested, the low-Zn tolerance index for grain yield and the low-Zn tolerance index for grain-Zn mass concentration were closely correlated with grain yield and grain-Zn mass concentration, respectively. Therefore, the low-Zn tolerance index for grain yield was effective in screening for high stability and high potential of grain yield, and the low-Zn tolerance index for grain-Zn mass concentration was effective for grain-Zn mass concentration under low and high soil-Zn conditions. Genotypic differences in yield and grain-Zn mass concentration were shown to be unrelated and therefore deserve separate attention in breeding programmes. Combining the low-Zn tolerance index for grain yield and the low-Zn tolerance index for grain-Zn mass concentration in a single low-Zn tolerance index was considered but did not appear to be superior to using the two indices separately.

分类号:

  • 相关文献

[1]Zinc uptake kinetics in the low and high-affinity systems of two contrasting rice genotypes. Meng, Fanhua,Liu, Di,Yang, Xiaoe,Shohag, M. J. I.,Li, Tingqiang,Lu, Lingli,Feng, Ying,Meng, Fanhua,Yang, Juncheng.

[2]Genetic variability assessed by microsatellites in the breeding populations of the shrimp Penaeus (Fenneropenaeus) chinensis in China. Zhang, Tianshi,Kong, Jie,Wang, Weiji,Wang, Qingyin,Zhang, Tianshi.

[3]Crop production, nitrogen recovery and water use efficiency in rice-wheat rotation as affected by non-flooded mulching cultivation (NFMC). Ai, YW,Zhang, FS,Lu, SH,Zeng, XZ,Fan, MS. 2005

[4]Heritable alteration in DNA methylation induced by nitrogen-deficiency stress accompanies enhanced tolerance by progenies to the stress in rice (Oryza sativa L.). Von Wettstein, D.,Kou, H. P.,Li, Y.,Song, X. X.,Ou, X. F.,Liu, B.,Kou, H. P.,Li, Y.,Song, X. X.,Ou, X. F.,Liu, B.,Kou, H. P.,Ma, J.,Xing, S. C.. 2011

[5]A simplified genomic DNA extraction protocol for pre-germination genotyping in rice. Duan, Y. B.,Zhao, F. L.,Chen, H. D.,Sheng, W.,Teng, J. T.,Zhang, A. M.,Xue, J. P.,Li, H.,Ni, D. H.,Wei, P. C.. 2015

[6]Inheritance of resistance to rice stripe virus in rice line 'BL 1'. Ise, K,Ishikawa, K,Li, CY,Ye, CR. 2002

[7]Genetic dissection of QTL against phosphate deficiency in the hybrid rice 'Xieyou9308'. Zhang, Yingxin,Anis, Galal Bakr,Wu, Weiming,Yu, Ning,Shen, Xihong,Zhan, Xiaodeng,Cheng, Shihua,Cao, Liyong,Wang, Ruci,Zhang, Yingxin,Wu, Weiming,Shen, Xihong,Zhan, Xiaodeng,Cheng, Shihua,Cao, Liyong,Anis, Galal Bakr. 2018

[8]Characterization and cloning of SMALL GRAIN 4, a novel DWARF11 allele that affects brassinosteroid biosynthesis in rice. Shi, Zhenyuan,Rao, Yuchun,Xu, Jie,Hu, Shikai,Fang, Yunxia,Yu, Haiping,Pan, Jiangjie,Liu, Ruifang,Ren, Deyong,Wang, Xiaohu,Zhu, Yangzhou,Zhu, Li,Dong, Guojun,Zhang, Guangheng,Zeng, Dali,Guo, Longbiao,Hu, Jiang,Qian, Qian,Rao, Yuchun,Zhu, Yangzhou,Xu, Jie. 2015

[9]Over-expression of rice OsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit. Shi, ZhenYing,Wang, Jiang,Wan, XinShan,Shen, GeZhi,Wang, XinQi,Zhang, JingLiu. 2007

[10]Cytoplasm and cytoplasm-nucleus interactions affect agronomic traits in japonica rice. Tao, DY,Hu, FY,Yang, JY,Yang, GF,Yang, YQ,Xu, P,Li, J,Ye, CR,Dai, LY. 2004

[11]Density alteration of nutrient elements in rice grains of a low phytate mutant. Ren, Xue-Liang,Liu, Qing-Long,Fu, Hao-Wei,Wu, Dian-xing,Shu, Qing-Yao. 2007

[12]Analysis of QTLs for panicle exsertion and its relationship with yield and yield-related traits in rice (Oryza sativa L.). Zhao, C. F.,Chen, T.,Zhao, Q. Y.,Zhou, L. H.,Zhao, L.,Zhang, Y. D.,Zhu, Z.,Yao, S.,Wang, C. L.. 2016

[13]Fine mapping and candidate gene analysis of a green-revertible albino gene gra(t) in rice. Chen, Tao,Zhang, Yadong,Zhao, Ling,Zhu, Zhen,Lin, Jing,Zhang, Suobing,Wang, Cailin. 2009

[14]An efficient and high-throughput protocol for Agrobacterium-mediated transformation based on phosphomannose isomerase positive selection in Japonica rice (Oryza sativa L.). Duan, Yongbo,Li, Hao,Li, Juan,Ni, Dahu,Song, Fengshun,Li, Li,Yang, Jianbo,Duan, Yongbo,Song, Fengshun,Zhai, Chenguang,Mei, Wenqian,Gui, Huaping,Zhang, Wanggen,Li, Hao,Li, Juan,Ni, Dahu. 2012

[15]Identification and Expression of Genes Involved in Race-specific Blast Resistance in Rice. Hu, Hai-Yan,Zheng, Kang-Le,Zhuang, Jie-Yun,Zheng, Kang-Le,Zhuang, Jie-Yun,Chai, Rong-Yao,Li, Yu-Chuan. 2010

[16]Mapping of a major resistance gene to the brown planthopper in the rice cultivar Rathu Heenati. Sun, LH,Su, CC,Wang, CM,Zhai, HQ,Wan, JM. 2005

[17]Inheritance and mapping of male sterility restoration gene in upland japonica restorer lines. Tao, DY,Xu, P,Li, J,Hu, FY,Yang, YQ,Zhou, JW,Tan, XL,Jones, MP. 2004

[18]Characterisation of magnesium nutrition and interaction of magnesium and potassium in rice. Ding, Y.,Luo, W.,Xu, G.. 2006

[19]Dramatic genotypic difference in, and effect of genetic crossing on, tissue culture-induced mobility of retrotransposon Tos17 in rice. Lin, Chunjing,Hu, Lanjuan,Yang, Jingjing,Zhou, Tianqi,Xu, Chunming,Liu, Bao,Lin, Chunjing,Lin, Xiuyun,Long, Likun,Xing, Shaochen,Dong, Yingshan,Qi, Bao. 2012

[20]Identification of QTLs for cold tolerance at seedling stage in rice (Oryza sativa L.) using two distinct methods of cold treatment. Zhang, Shaohong,Liu, Bin,Zhao, Junliang,Wang, Xiaofei,Yang, Tifeng,Huang, Zhanghui,Zheng, Jingsheng,Peng, Shaobing,Leung, Hei. 2014

作者其他论文 更多>>