Genetic analysis of genotype x iron nutrition interaction on coleoptile elongation rate in rice (Oryza sativa L.)

文献类型: 外文期刊

第一作者: Ouyang, Younan

作者: Ouyang, Younan;Zeng, Fanrong;Zhuang, Jieyun;Yu, Shengmiao;Zhu, Lianfeng;Jin, Qianyu;Zhang, Guoping

作者机构:

关键词: rice (Oryza sativa L.);coleoptile elongation rate;quantitative trait loci;genotype x Fe interaction

期刊名称:EUPHYTICA ( 影响因子:1.895; 五年影响因子:2.181 )

ISSN: 0014-2336

年卷期: 2007 年 156 卷 3 期

页码:

收录情况: SCI

摘要: High iron levels in rice soils represent a major problem for seedling establishment and crop growth, and rapid coleoptile elongation is the mechanism for the rice to cope with the induced stress. Quantitative trait loci (QTLs) analysis for coleoptile elongation rate (CER) in rice (Oryza sativa L.) was performed to study the inheritance of CER and its response to Fe nutrition. A recombinant inbred line (RIL) population of 244 lines derived from the cross zhenshan97B/miyang46 was germinated in 2004 under four Fe concentrations (0, 1.79, 7.16, and 14.32 mM). Seven QTLs with additive effects of stimulating CER were detected under the four Fe concentrations and they were localized on chromosome 1, 4, 5 and 7 with LOD ranging from 2.88 to 15.94 and their contribution to total phenotypic variance ranging from 4.17% to 15.87%, respectively. In addition, 21 QTLs with additive x additive epistasis were detected on all chromosomes but 4 and 9. The detected QTLs with additive effect mainly came from the male parent ZS97B. The detected number of QTLs with additive and epistatic effects for CER varied with Fe concentration. An additive QTL with G x Fe effect was detected between RZ460 and RZ730 markers of chromosome 1 using multi-environmental model of QTL Mapper 1.6 and considering Fe concentration as an environmental factor. The pattern of CER in the different Fe concentrations was well characterized by the genetic model of quantitative traits. It was found that some RILs had higher CER than both parents in each Fe concentration.

分类号:

  • 相关文献

[1]Detecting major QTL associated with resistance to bacterial blight using a set of rice reciprocal introgression lines with high density SNP markers. Zhang, Fan,Xu, Meirong,Wang, Wensheng,Xu, Jianlong,Zhou, Yongli,Li, Zhikang,Xie, Xuewen,Li, Zhikang,Xu, Jianlong,Zhou, Yongli.

[2]Identification of stably expressed quantitative trait loci for cooked rice elongation in non-Basmati varieties. Liu, L. L.,Yan, X. Y.,Jiang, L.,Zhang, W. W.,Wang, M. Q.,Zhou, S. R.,Shen, Y.,Shen, Y. Y.,Liu, S. J.,Chen, L. M.,Wang, J. K.. 2008

[3]Detection of epistatic interactions of three QTLs for heading date in rice using single segment substitution lines. Ding, Han-Feng,Liu, Xu,Li, Run-Fang,Wang, Wen-Ying,Zhang, Y.,Zhang, Xiao-Dong,Yao, Fang-Yin,Li, Guang-Xian,Jiang, Ming-Song,Ding, Han-Feng.

[4]Mapping QTLs for drought tolerance in an F-2:3 population from an inter-specific cross between Gossypium tomentosum and Gossypium hirsutum. J.Y. Zheng,G. Oluoch,M.K. Riaz Khan,X.X. Wang,X.Y. Cai,Z.L. Zhou,C.Y. Wang,Y.H. Wang,X.Y. Li,F. Liu,K.B. Wang. 2016

[5]QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Fu-Ding Sun,Jian-Hong Zhang,Shu-Fang Wang,Wan-Kui Gong,Yu-Zhen Shi,Ai-Ying Liu,Jun-Wen Li,Ju-Wu Gong,Hai-Hong Shang,You-Lu Yuan.

[6]Quantitative trait loci mapping for two seed yield component traits in an oilseed rape (Brassica napus) cross. WEI CHEN,YONGSHAN ZHANG,JINBO YAO,CHAOZHI MA,JINXING TU,FU TINGDONG. 2011

[7]Construction of a high-density linkage map and mapping quantitative trait loci for somatic embryogenesis using leaf petioles as explants in upland cotton (Gossypium hirsutum L.). Zhenzhen Xu,Chaojun Zhang,Xiaoyang Ge,Ni Wang,Kehai Zhou,Xiaojie Yang,Zhixia Wu,Xueyan Zhang,Chuanliang Liu,Zuoren Yang,Changfeng Li,Kun Liu,Zhaoen Yang,Yuyuan Qian,Fuguang Li.

[8]Quantitative Trait Locus Mapping for Verticillium wilt Resistance in an Upland Cotton Recombinant Inbred Line Using SNP-Based High Density Genetic Map. Palanga, Koffi Kibalou. 2017

[9]Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of three plant morphological traits in upland cotton (Gossypium hirsutum L.). Haikun Qi,Huang, Qun,Yan, Gentu,Ning Wang,Wenqing Qiao,Qinghua Xu,Hong Zhou,Jianbin Shi,Gentu Yan,Qun Huang.

[10]Dissection of heterosis for yield and related traits using populations derived from introgression lines in rice. Xiang, Chao,Zhang, Hongjun,Wei, Shaobo,Fu, Binying,Gao, Yongming,Wang, Hui,Xia, Jiafa,Li, Zefu,Ye, Guoyou. 2016

[11]Identification of QTLs for Yield-Related Traits in the Recombinant Inbred Line Population Derived from the Cross Between a Synthetic Hexaploid Wheat-Derived Variety Chuanmai 42 and a Chinese Elite Variety Chuannong 16. Li Jun,Wei Hui-ting,Li Chao-su,Yang Wu-yun,Chen Fang,Wu Yuan-qi. 2011

[12]Genetic dissection of QTL against phosphate deficiency in the hybrid rice 'Xieyou9308'. Zhang, Yingxin,Anis, Galal Bakr,Wu, Weiming,Yu, Ning,Shen, Xihong,Zhan, Xiaodeng,Cheng, Shihua,Cao, Liyong,Wang, Ruci,Zhang, Yingxin,Wu, Weiming,Shen, Xihong,Zhan, Xiaodeng,Cheng, Shihua,Cao, Liyong,Anis, Galal Bakr. 2018

[13]Identify QTLs for grain size and weight in common wild rice using chromosome segment substitution lines across six environments. Qi, Lan,Li, Kaimian,Qi, Lan,Sun, Yan,Li, Jing,Su, Long,Zheng, Xiaoming,Yang, Qingwen,Qiao, Weihua,Wang, Xiaoning. 2017

[14]Dissection of component QTL expression in yield formation in rice. Guo, LB,Xing, YZ,Mei, HW,Xu, CG,Shi, CH,Wu, P,Luo, LJ. 2005

[15]Mapping QTLs for stomatal density and size under drought stress in wheat (Triticum aestivum L.). Wang Shu-guang,Jia Shou-shan,Sun Dai-zhen,Fan Hua,Chang Xiao-ping,Jing Rui-lian. 2016

[16]QTL mapping for resistance to SCMV in chinese maize germplasm. Zhang, SH,Li, XH,Wang, ZH,George, ML,Jeffers, D,Wang, FG,Liu, XD,Li, MS,Yuan, LX. 2003

[17]The detection of QTLs controlling bacterial wilt resistance in tobacco (N-tabacum L.). Qian, Yi-liang,Yao, Da-nian,Qian, Yi-liang,Zu, Chao-long,Gao, Zheng-liang,Sun, Xue-yong,Wang, Xin-sheng,Wang, Da-zhou,Zhang, Hong-jun,Zhang, Hong-jun,Wang, Zhi-yong. 2013

[18]Quantitative trait loci for grain-quality traits across a rice F-2 population and backcross inbred lines. Lu, Bingyue,Yang, Chunyan,Xie, Kun,Zhang, Long,Wu, Tao,Li, Linfang,Liu, Xi,Jiang, Ling,Wan, Jianmin,Lu, Bingyue,Wan, Jianmin. 2013

[19]Analysis of QTL for resistance to head smut (Sporisorium rediana). Li, X. H.,Gao, S. R.,Shi, H. L.,Zhang, S. H.,Li, M. S.,Xie, C. X.,Wang, Z. H.,George, M. L. C.. 2008

[20]Genetic Analysis in Maize Foundation Parents with Mapping Population and Testcross Population: Ye478 Carried More Favorable Alleles and Using QTL Information Could Improve Foundation Parents. Hou, Xianbin,Xiao, Qianlin,Yi, Qiang,Bian, Shaowei,Hu, Yufeng,Huang, Yubi,Liu, Hanmei,Zhang, Junjie,Hao, Xiaoqin,Cheng, Weidong,Li, Yu. 2016

作者其他论文 更多>>