Differential aluminum resistance and organic acid anions secretion in triticale

文献类型: 外文期刊

第一作者: Liu, Qiang

作者: Liu, Qiang;He, Li Sheng;Wang, Zheng Yuan;Cheng, Xie Zheng;Zheng, Shao Jian

作者机构:

关键词: aluminum resistance;anion channel;low temperature;organic acid anions;triticale

期刊名称:COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS ( 影响因子:1.327; 五年影响因子:1.315 )

ISSN: 0010-3624

年卷期: 2007 年 38 卷 15-16 期

页码:

收录情况: SCI

摘要: Triticale (X Triticosecale Wittmack), a hybrid of wheat and rye, shows a high degree of aluminum (Al) tolerance, but variation in Al resistance between cultivars does exist. The mechanisms responsible for differential Al resistance in 10 triticale cultivars were investigated in this study. Triticale roots secreted both malate and citrate in response to Al stress. The amount of organic acid anions secreted was correlated positively to the relative root elongation (an index for Al resistance) and negatively to the Al content in root apices under Al stress, suggesting that the secretion of malate and citrate seems to be involved in the exclusion of Al from root tip. The Al-induced secretion of malate and citrate was characterized using an Al-resistant cultivar (ZC 237) and an M-sensitive cultivar (OH 1621). Root elongation was significantly inhibited in both ZC 237 and OH 1621 after 24 h of exposure to 30, 50, or 100 mu M Al but was more strongly in OH 1621 than in ZC 237 at all Al concentrations tested. A marked lag phase (3 h) between the addition of Al and the secretion of organic acid anions was observed in both triticale cultivars, and the secretion increased with increasing external Al concentration. The two anion-channel inhibitors, phenylglyoxal and niflumic acid, significantly inhibited the secretion of malate and citrate in ZC 237, with the degree of the inhibition of niflumic acid greater than that of phenylglyoxal. The Al-induced secretion of malate and citrate decreased to a very low level at low temperature (4 degrees C) in both cultivars. These results indicate that Al-induced malate and citrate secretion from roots play important roles in excluding Al and thereby detoxifying Al in trificale. The Al-induced organic acid anions were inhibited by anion-channel inhibitors and were dependent on temperature.

分类号:

  • 相关文献

[1]Aluminum tolerance in Centipedegrass (Eremochloa ophiuroides [Munro] Hack.): Excluding Al from root. Yan, Jun,Chen, Jingbo,Liu, Jianxiu,Yan, Jun,Yu, Li. 2012

[2]Characterization of fluoride uptake by roots of tea plants (Camellia sinensis (L.) O. Kuntze). Zhang, Lei,Li, Qiong,Ma, Lifeng,Ruan, Jianyun,Zhang, Lei,Li, Qiong,Ma, Lifeng,Ruan, Jianyun.

[3]Quantitative trait loci for Aluminum resistance in wheat cultivar Chinese Spring. Ma, Hong-Xiang,Bai, Gui-Hua,Lu, Wei-Zhong. 2006

[4]The Tartary Buckwheat Genome Provides Insights into Rutin Biosynthesis and Abiotic Stress Tolerance. Zhang, Lijun,Ma, Mingchuan,Liu, Longlong,Zhou, Jianping,Nan, Chenghu,Qin, Yongjun,Cui, Lin,Liu, Huimin,Qiao, Zhijun,Zhang, Lijun,Han, Yuanhuai,Ma, Mingchuan,Liu, Longlong,Zhou, Jianping,Nan, Chenghu,Qin, Yongjun,Cui, Lin,Liu, Huimin,Qiao, Zhijun,Zhang, Lijun,Han, Yuanhuai,Ma, Mingchuan,Liu, Longlong,Zhou, Jianping,Nan, Chenghu,Qin, Yongjun,Cui, Lin,Liu, Huimin,Qiao, Zhijun,Li, Xiuxiu,Ma, Bin,Gao, Qiang,Du, Huilong,Li, Yan,Cao, Yinghao,Qi, Ming,Lu, Hongwei,Liang, Chengzhi,Li, Xiuxiu,Du, Huilong,Lu, Hongwei,Liang, Chengzhi,Han, Yuanhuai,Zhu, Yaxin,Wang, Jun. 2017

[5]QTL analysis of aluminum resistance in rice (Oryza sativa L.). Xue, Y.,Wan, J. M.,Jiang, L.,Liu, L. L.,Su, N.,Zhai, H. Q.,Ma, J. F.. 2006

[6]Molecular cytogenetic identification of Triticum aestivum Secale cereale substitution and addition lines. Li, HJ,Zhu, ZQ,Zhang, YM,Guo, BH,Wen, YX,Jia, X. 1998

[7]Molecular cytogenetic characterization of a new leaf rolling triticale. Ren, Z. L.,Yang, E. N.,Zhang, J. F.,Zou, Y. C.,Yang, Z. J.. 2011

[8]Characterization of wheat-triticale lines resistant to powdery mildew, stem rust, stripe rust, wheat curl mite, and limitation on spread of WSMV. Li, Hongjie,Conner, R. L.,Liu, Zhiyong,Li, Yiwen,Chen, Yu,Zhou, Yilin,Duan, Xiayu,Shen, Tianmin,Chen, Qin,Graf, R. J.,Jia, Xu. 2007

[9]A fast generation cycling system for oat and triticale breeding. Liu, Hui,Yan, Guijun,Zwer, Pamela,Wang, Haibo,Liu, Chunji,Lu, Zhanyuan,Wang, Yanxia.

[10]Natural variation reveals that OsSAP16 controls low-temperature germination in rice. Wang, Xiang,Zou, Baohong,Shao, Qiaolin,Cui, Yongmei,Lu, Shan,Zhang, Yan,Huang, Ji,Hua, Jian,Huang, Quansheng,Hua, Jian. 2018

[11]Cloning of 9-cis-epoxycarotenoid dioxygenase gene (TaNCED1) from wheat and its heterologous expression in tobacco. Zhang, S. J.,Song, G. Q.,Li, Y. L.,Gao, J.,Liu, J. J.,Fan, Q. Q.,Huang, C. Y.,Sui, X. X.,Chu, X. S.,Guo, D.,Li, G. Y.. 2014

[12]Exogenous 6-benzylaminopurine confers tolerance to low temperature by amelioration of oxidative damage in eggplant (Solanum melongena L.) seedlings. Chen, Jianlin,Wu, Xuexia,Zhu, Zongwen,Xu, Shuang,Zha, Dingshi,Wu, Xuexia,Zhu, Zongwen,Xu, Shuang,Zha, Dingshi,Yao, Xinfeng. 2016

[13]Molecular characterization of the soybean L-asparaginase gene induced by low temperature stress. Cho, Chang-Woo,Lee, Hye-Jeong,Chung, Eunsook,Kim, Kyoung Mi,Kim, Jee Eun Heo Jung-In,Chung, Jongil,Ma, Youzhi,Fukui, Kiichi,Lee, Dae-Won,Kim, Doh-Hoon,Chung, Young-Soo,Lee, Jai-Heou. 2007

[14]Bioaugmentation for biomass production at low temperature using enriched psychroactive methanogenic consortia. Cheng, Lei,Deng, Yu,Qiu, Tianlei,Sun, Xiaohong,Wang, Xuming,Han, Meilin,Cheng, Lei,Deng, Yu. 2011

[15]Transcriptome analysis of dormant tomonts of the marine fish ectoparasitic ciliate Cryptocaryon irritans under low temperature. Yin, Fei,Sun, Peng,Gao, Quanxin,Wang, Jiteng. 2016

[16]Screening and identification of microsatellite markers associated with cold tolerance in Nile tilapia Oreochromis niloticus. Zhu, H. P.,Liu, Z. G.,Lu, M. X.,Gao, F. Y.,Ke, X. L.,Huang, Z. H.. 2015

[17]Metabolic changes of peanut (Arachis hypogaea L.) buds in response to low temperature (LT). Wang, X. J.,Sun, D. L.,Bian, N. F.,Zhang, Z. M.,Wang, X.,Xu, Z. J.,Qi, Y. J.,Shen, Y..

[18]Expression Analysis of Low Temperature Responsive Genes in Eupatorium Adenophorum Spreng Using cDNA-AFLP. Wang, Junying,Zhang, Haiwen,Huang, Rongfeng.

[19]Impact of arbuscular mycorrhizal fungi (AMF) on cucumber growth and phosphorus uptake under cold stress. Ma, Jun,Zou, Zhirong,Ma, Jun,Li, Yansu,Yu, Xianchang,Yan, Yan,He, Chaoxing,Janouskova, Martina.

[20]ABI-like transcription factor gene TaABL1 from wheat improves multiple abiotic stress tolerances in transgenic plants. Xu, Dong-Bei,Li, Xue-Yin,Chen, Yao-Feng,Gao, Shi-Qing,Ma, You-Zhi,Xu, Zhao-Shi,Li, Lian-Cheng,Chen, Ming,Gao, Shi-Qing,Zhao, Chang-Ping,Tang, Yi-Miao,Li, Xue-Yin.

作者其他论文 更多>>