Identification of quantitative trait loci associated with aluminum tolerance in rice (Oryza sativa L.)

文献类型: 外文期刊

第一作者: Xue, Yong

作者: Xue, Yong;Wan, Jianmin;Jiang, Ling;Wang, Chunming;Liu, Linglong;Zhang, Yuan-ming;Zhai, Huqu

作者机构:

关键词: aluminum tolerance;backcross inbred lines;QTL analysis;rice (Oryza sativa L.)

期刊名称:EUPHYTICA ( 影响因子:1.895; 五年影响因子:2.181 )

ISSN: 0014-2336

年卷期: 2006 年 150 卷 1-2 期

页码:

收录情况: SCI

摘要: Quantitative trait loci (QTL) analysis for Al tolerance was performed in rice using a mapping population of 98 BC1F10 lines (backcross inbred lines: BILs), derived from a cross of Al-tolerant cultivar of rice (Oryza sativa L. cv. Nipponbare) and Al-sensitive cultivar (cv. Kasalath). Three characters related to Al tolerance, including root elongation under non-stress conditions (CRE), root elongation under Al stress (SRE) and the relative root elongation (RRE) under Al stress versus non-stress conditions, were evaluated for the BILs and the parents at seedling stage. A total of seven QTLs for the three traits were identified. Among them, three putative QTLs for CRE (qCRE-6, qCRE-8 and qCRE-9) were mapped on chromosomes 6, 8 and 9, respectively. One QTL for SRE (qSRE-4) was identified on chromosome 4. Three QTLs (qRRE-5, qRRE-9 and qRRE-10) for RRE were detected on chromosomes 5, 9, 10 and accounted for 9.7-11.8% of total phenotypic variation. Interestingly, the QTL qRRE-5 appears to be syntenic with the genomic region carrying a major Al tolerance gene on chromosome 6 of maize. Another QTL, qRRE-9, appears to be similar among different rice populations, while qRRE-10 is unique in the BIL population. The common QTLs for CRE and RRE indicate that candidate genes conferring Al tolerance in the rice chromosome 9 may be associated with root growth rates. The existence of QTLs for Al tolerance was confirmed in substitution lines for corresponding chromosomal segments. These results also provide the possibilities of enhancing Al tolerance in rice through using marker-assisted selection (MAS) and pyramiding QTLs.

分类号:

  • 相关文献

[1]The genetic basic and fine-mapping of a stable quantitative-trait loci for aluminium tolerance in rice. Xue, Y.,Jiang, L.,Su, N.,Wang, J. K.,Deng, P.,Ma, J. F.,Zhai, H. Q.,Wan, J. M..

[2]Genetic analysis of leaffolder resistance in rice. Rao, Yuchun,Dong, Guojun,Zeng, Dali,Hu, Jiang,Zeng, Longjun,Gao, Zhengyu,Zhang, Guanghen,Guo, Longbiao,Qian, Qian,Rao, Yuchun,Dong, Guojun. 2010

[3]A comparative transcriptome analysis of two sets of backcross inbred lines differing in lint-yield derived from a Gossypium hirsutum x Gossypium barbadense population. Wu Man,Liyuan Zhang,Xihua Li,Xiaobing Xie,Wenfeng Pei,Jiwen Yu,Shuxun Yu,Jinfa Zhang. 2016

[4]Identification of QTLs Underlying Folate Content in Milled Rice. Dong Wei,Cheng Zhi-jun,Xu Jian-long,Zheng Tian-qing,Wang Xiao-le,Zhang Hong-zheng,Wang Jie,Wan Jian-min. 2014

[5]Mapping QTLs related to rice seed storability under natural and artificial aging storage conditions. Ngo Thi Hang,Lin, Qiuyun,Liu, Linglong,Liu, Xi,Liu, Shijia,Wang, Wenyan,Li, Linfang,He, Niqing,Liu, Zhou,Jiang, Ling,Wan, Jianmin,Wan, Jianmin.

[6]Identification of quantitative trait loci for seed storability in rice (Oryza sativa L.). Li, Linfang,Lin, Qiuyun,Liu, Shijia,Liu, Xi,Wang, Wenyan,Ngo Thi Hang,Liu, Feng,Zhao, Zhigang,Jiang, Ling,Wan, Jianmin. 2012

[7]TaALMT1 promoter sequence compositions, acid tolerance, and Al tolerance in wheat cultivars and landraces from Sichuan in China. Dai, S. F.,Liu, D. C.,Wei, Y. M.,Zheng, Y. L.,Wen, D. J.,Zhao, L.,Yan, Z. H.,Pu, Z. J.. 2013

[8]Wheat genotypes differing in aluminum tolerance differ in their growth response to CO2 enrichment in acid soils. Tian, Qiuying,Zhang, Xinxin,Gao, Yan,Bai, Wenming,Zhang, Wen-Hao,Ge, Feng,Ge, Feng,Zhang, Wen-Hao,Ma, Yibing. 2013

[9]Aluminum tolerance in Centipedegrass (Eremochloa ophiuroides [Munro] Hack.): Excluding Al from root. Yan, Jun,Chen, Jingbo,Liu, Jianxiu,Yan, Jun,Yu, Li. 2012

[10]Identifying aluminum tolerance in rice with a molecular marker. Zhang, Peng,Zhong, Zhengzheng,Tong, Hanhua,Zhong, Kaizhen. 2017

[11]Different Aluminum Tolerance among Indica, Japonica and Hybrid Rice Varieties. Shu Chang,Wu Jing-hao,Shi Gao-ling,Lou Lai-qing,Deng Jun-xia,Cai Qing-sheng,Wan Jian-lin. 2015

[12]Validation of quantitative trait loci for aluminum tolerance in Chinese wheat landrace FSW. Dai, Jian,Dai, Jian,Bai, Guihua,Zhang, Dadong,Dai, Jian,Hong, Delin. 2013

[13]Nitric oxide improves aluminum tolerance by regulating hormonal equilibrium in the root apices of rye and wheat. He, Long-Fei,Gu, Ming-Hua,Li, Xiao-Feng,He, Hu-Yi. 2012

[14]Genome-wide transcriptomic and phylogenetic analyses reveal distinct aluminum-tolerance mechanisms in the aluminum-accumulating species buckwheat (Fagopyrum tataricum). Zhu, Haifeng,Zhu, Yifang,Zou, Jianwen,Zhao, Fang-Jie,Huang, Chao-Feng,Wang, Hua. 2015

[15]QTL Mapping for Adult Plant Resistance to Powdery Mildew in Italian Wheat cv. Strampelli. Asad Muhammad Azeem,BAI Bin,LAN Cai-xia,YAN Jun,XIA Xian-chun,ZHANG Yong,HE Zhong-hu. 2013

[16]SSR-based genetic mapping and QTL analysis for timing of spring bud flush, young shoot color, and mature leaf size in tea plant (Camellia sinensis). Tan, Li-Qiang,Wang, Li-Yuan,Xu, Li-Yi,Wu, Li-Yun,Zhang, Cheng-Cai,Wei, Kang,Bai, Pei-Xian,Li, Hai-Lin,Cheng, Hao,Tan, Li-Qiang,Xu, Li-Yi,Peng, Min,Qi, Gui-Nian,Wang, Li-Yuan,Wu, Li-Yun,Zhang, Cheng-Cai,Wei, Kang,Bai, Pei-Xian,Li, Hai-Lin,Cheng, Hao. 2016

[17]Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.). Pandey, Manish K.,Qiao, Lixian,Feng, Suping,Khera, Pawan,Wang, Hui,Guo, Baozhu,Pandey, Manish K.,Khera, Pawan,Varshney, Rajeev K.,Pandey, Manish K.,Qiao, Lixian,Feng, Suping,Khera, Pawan,Wang, Hui,Culbreath, Albert K.,Guo, Baozhu,Wang, Ming Li,Tonnis, Brandon,Barkley, Noelle A.,Qiao, Lixian,Feng, Suping,Wang, Hui,Wang, Jianping,Holbrook, C. Corley. 2014

[18]Construction of an ultrahigh-density genetic linkage map for Jatropha curcas L. and identification of QTL for fruit yield. Xia, Zhiqiang,Zhang, Shengkui,Wen, Mingfu,Lu, Cheng,Sun, Yufang,Zou, Meiling,Wang, Wenquan,Xia, Zhiqiang,Zhang, Shengkui,Zou, Meiling. 2018

[19]QTLs and candidate genes for chlorate resistance in rice (Oryzasativa L.). Teng, Sheng,Tian, Chaoguang,Chen, Mingsheng,Zeng, Dali,Guo, Longbiao,Zhu, Lihuang,Han, Bin,Qian, Qian. 2006

[20]Mapping of a major resistance gene to the brown planthopper in the rice cultivar Rathu Heenati. Sun, LH,Su, CC,Wang, CM,Zhai, HQ,Wan, JM. 2005

作者其他论文 更多>>