Potential of the quantitative trait loci mapping using crossbred population

文献类型: 外文期刊

第一作者: Yang, SL

作者: Yang, SL;Zhu, ZM;Li, K

作者机构:

关键词: crossbred population;index selection;linkage disequilibrium;QTL mapping

期刊名称:ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES ( 影响因子:2.509; 五年影响因子:2.604 )

ISSN: 1011-2367

年卷期: 2005 年 18 卷 12 期

页码:

收录情况: SCI

摘要: In the process of crossbreeding, the linkage disequilibria between the quantitative trait loci (QTL) and their linked markers were reduced gradually with increasing generations. To study the potential of QTL mapping using the crossbred population, we presented a mixed effect model that treated the mean allelic value of the different founder populations as the fixed effect and the allelic deviation from the population mean as random effect. It was assumed that there were fifty QTLs having effect on the trait variation, the population mean and Variance were divided to each QTL in founder generation in our model. Only the additive effect was considered in this model for simulation. Six schemes (S1-S6) of crossbreeding were studied. The selection index was used to evaluate the synthetic breeding value of two traits of the individual in the scheme of S2, S4 and S6, and the individuals with high selection index were chosen as the parents of the next generation. Random selection was used in the scheme of S1, S3 and S5. In this study, we premised a QTL explained 40% of the genetic variance was located in a region of 20 cM by the linkage analysis previously. The log likelihood ratio (log LR) was calculated to determine the presence of a QTL at the particular chromosomal position in each of the generations from the fourth to twentieth. The profiles of log LR and the number of the highest log LR located in the region of 5, 10 and 20 cM were compared between different generations and schemes. The profiles and the correct number reduced gradually with the generations increasing in the schemes of S2, S4 and S6, but both of them increased in the schemes of S1, S3 and S5. From the results, we concluded that the crossbreeding population undergoing random selection was suitable for improving the resolution of QTL mapping. Even experiencing index selection, there was still enough variation existing within the crossbred population before the fourteenth generation that could be used to refine the location of QTL in the chromosome region.

分类号:

  • 相关文献

[1]Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes in rice (Oryza sativa L.). Li, ZK,Fu, BY,Gao, YM,Xu, JL,Ali, J,Lafitte, HR,Jiang, YZ,Rey, JD,Vijayakumar, CHM,Maghirang, R,Zheng, TQ,Zhu, LH.

[2]The dopamine D2 receptor gene polymorphisms associated with chicken broodiness. Xu, H. P.,Shen, X.,Zhou, M.,Luo, C. L.,Kang, L.,Liang, Y.,Zeng, H.,Nie, Q. H.,Zhang, D. X.,Zhang, X. Q.,Zhou, M.,Kang, L.. 2010

[3]Association mapping analysis of fiber yield and quality traits in Upland cotton (Gossypium hirsutum L.). Mulugeta Seyoum Ademe,Du, Xiongming,Jia, Yinhua,Shoupu He,Zhaoe Pan,Junling Sun,Qinglian Wang,Hongde Qin,Jinhai Liu,Hui Liu,Jun Yang,Dongyong Xu,Jinlong Yang,Zhiying Ma,Jinbiao Zhang,Zhikun Li,Zhongmin Cai,Xuelin Zhang,Xin Zhang,Aifen Huang,Xianda Yi,Guanyin Zhou,Lin Li,Haiyong Zhu,Baoyin Pang,Liru Wang,Yinhua Jia,Xiongming Du.

[4]Estimations of genomic linkage disequilibrium and effective population sizes in three sheep populations. Zhao, Fuping,Wang, Guangkai,Wei, Caihong,Zhang, Li,Wang, Huihua,Zhang, Shuzhen,Liu, Ruizao,Liu, Zhen,Du, Lixin,Zeng, Tao.

[5]QTL analysis for resistance to preharvest sprouting in rice (Oryza sativa). Zhang, Y. Z.,Gao, F. Y.,Ren, G. J.,Lu, X. J.,Sun, S. X.,Li, H. J.,Gao, Y. M.,Luo, H.,Yan, W. G..

[6]A genome-wide survey with different rapeseed ecotypes uncovers footprints of domestication and breeding. Wei, Dayong,Cui, Yixin,He, Yajun,Ding, Yijuan,Li, Jiana,Qian, Wei,Wei, Dayong,Xiong, Qing,Qian, Lunwen,Tong, Chaobo,Lu, Guangyuan,Jung, Christian.

[7]Genome-wide association study for kernel weight-related traits using SNPs in a Chinese winter wheat population. Chen, Guangfeng,Zhang, Han,Deng, Zhiying,Tian, Jichun,Chen, Guangfeng,Li, Dongmei,Wang, Mingyou,Zhang, Han,Wu, Rugang.

[8]Six single nucleotide polymorphisms in adipocyte fatty acid-binding protein (A-FABP) gene in Beijing ducks. Zhao, N.,Hou, S. S.,Yang, X. G.,Huang, W.,Zhao, N.,Liu, X. L.,Yang, X. G..

[9]Genotyping-by-sequencing-based genome-wide association studies on Verticillium wilt resistance in autotetraploid alfalfa (Medicago sativa L.). Yu, Long-Xi,Zhang, Tiejun,Zheng, Ping,Main, Dorrie,Rodringuez, Jonas,Zhang, Tiejun.

[10]Estimation of linkage disequilibrium levels and haplotype block structure in Chinese Simmental and Wagyu beef cattle using high-density genotypes. Niu, Hong,Zhu, Bo,Guo, Peng,Zhang, Wengang,Xue, Jinglong,Chen, Yan,Zhang, Lupei,Gao, Huijiang,Gao, Xue,Xu, Lingyang,Li, Junya.

[11]Linkage Disequilibrium Estimation of Chinese Beef Simmental Cattle Using High-density SNP Panels. Zhu, M.,Zhu, B.,Wang, Y. H.,Wu, Y.,Xu, L.,Guo, L. P.,Yuan, Z. R.,Zhang, L. P.,Gao, X.,Gao, H. J.,Xu, S. Z.,Li, J. Y.,Zhu, B..

[12]Distribution and linkage disequilibrium analysis of polymorphisms of MC4R, LEP, H-FABP genes in the different populations of pigs, associated with economic traits in DIV2 line. Chao, Zhe,Wang, Feng,Wei, Li-Min,Sun, Rui-Ping,Liu, Hai-Long,Liu, Quan-Wei,Zheng, Xin-Li,Deng, Chang-Yan,Deng, Chang-Yan.

[13]Polymorphisms of caprine GDF9 gene and their association with litter size in Jining Grey goats. Feng, T.,Chu, M. X.,Cao, G. L.,Di, R.,Fang, L.,Geng, C. X.,Chen, H. Q.,Lang, X. Z.,Liu, X. L.,Li, N..

[14]Comparative LD mapping using single SNPs and haplotypes identifies QTL for plant height and biomass as secondary traits of drought tolerance in maize. Lu, Yanli,Xu, Jie,Yuan, Zhimin,Lan, Hai,Rong, Tingzhao,Lu, Yanli,Xu, Yunbi,Xu, Yunbi,Shah, Trushar.

[15]Development of 12 polymorphic microsatellite markers in Coilia ectenes Jordan and Seale, 1905 (Clupeiformes: Engraulidae) and cross-species amplification in Coilia mystus Linnaeus, 1758. Ma, Chunyan,Cheng, Qiqun,Zhang, Qingyi.

[16]Association mapping of agronomic traits on chromosome 2A of wheat. Yao, Ji,Liu, Lihua,Zheng, Yonglian,Yao, Ji,Wang, Lixin,Liu, Lihua,Zhao, Changping.

[17]Estimates of linkage disequilibrium and effective population sizes in Chinese Merino (Xinjiang type) sheep by genome-wide SNPs. Liu, Shudong,He, Sangang,Chen, Lei,Li, Wenrong,Liu, Mingjun,He, Sangang,Chen, Lei,Li, Wenrong,Liu, Mingjun,Di, Jiang.

[18]Genome wide linkage disequilibrium in Chinese asparagus bean (Vigna. unguiculata ssp. sesquipedialis) germplasm: Implications for domestication history and genome wide association studies. Xu, P.,Wu, X.,Wang, B.,Liu, Y.,Lu, Z.,Wang, S.,Li, G.,Luo, J.,Ehlers, J. D.,Close, T. J.,Roberts, P. A..

[19]Genetic properties of 240 maize inbred lines and identity-by-descent segments revealed by high-density SNP markers. Liu, Changlin,Hao, Zhuanfang,Zhang, Degui,Xie, Chuanxiao,Li, Mingshun,Yong, Hongjun,Zhang, Shihuang,Weng, Jianfeng,Li, Xinhai,Zhang, Xiaocong.

[20]Two Novel SNPs in HSF1 Gene Are Associated with Thermal Tolerance Traits in Chinese Holstein Cattle. Li, Qiu-Ling,Ju, Zhi-Hua,Huang, Jin-Ming,Li, Jian-Bin,Li, Rong-Ling,Hou, Ming-Hai,Wang, Chang-Fa,Zhong, Ji-Feng.

作者其他论文 更多>>