Successive chromosome walking by compatible ends ligation inverse PCR

文献类型: 外文期刊

第一作者: Ren, MZ

作者: Ren, MZ;Chen, QJ;Li, L;Zhang, R;Guo, SD

作者机构:

关键词: Compatible ends ligation inverse PCR (CELI-PCR);chromosome walking;Gossypium hirsutum

期刊名称:MOLECULAR BIOTECHNOLOGY ( 影响因子:2.695; 五年影响因子:2.303 )

ISSN: 1073-6085

年卷期: 2005 年 30 卷 2 期

页码:

收录情况: SCI

摘要: Here we describe an advanced polymerase chain reaction (PCR) technique, the compatible ends ligation inverse PCR (CELI-PCR) for chromosome walking. In CELI-PCR, several restriction enzymes, which produce compatible cohesive ends, were used to digest target DNA simultaneously or sequentially to produce DNA fragments of suitable size. DNA fragments were then easily circularized and PCR amplification could be carried out efficiently. The previous limitations of inverse PCR were overcome, such as unavailable restriction sites, poor template DNA circularization, and low amplification efficiency. Therefore, successive chromosome walking was performed successfully. Our work, isolating a 11,395-bp fragment from Gossypium hirsutum, was presented as an example to describe how CELI-PCR was carried out.

分类号:

  • 相关文献

[1]Cloning and characterization of the pyrG gene of Pleurotus ostreatus and Pleurotus eryngii. Yin, Yonggang,Li, Ming,Yin, Yonggang,Liu, Yu,Wang, Shouxian,Niu, Liying,Zhao, Shuang,Geng, Xiaoli,Xu, Feng,Li, Huamin. 2012

[2]Overcoming obstacles to interspecific hybridization between Gossypium hirsutum and G. turneri. Chen, Yu,Chen, Yu,Feng, Shouli,Zhao, Ting,Zhou, Baoliang. 2018

[3]Heterosis in yield, endotoxin expression and some physiological parameters in Bt transgenic cotton. Dong, H. Z.,Li, W. J.,Tang, W.,Li, Z. H.,Zhang, D. M.. 2007

[4]Characterization of eleven monosomic alien addition lines added from Gossypium anomalum to Gossypium hirsutum using improved GISH and SSR markers. Wang, Xiaoxiao,Wang, Yingying,Wang, Chen,Chen, Yu,Chen, Yu,Feng, Shouli,Zhao, Ting,Zhou, Baoliang,Chen, Yu. 2016

[5]Inducement and identification of chromosome introgression and translocation of Gossypium australe on Gossypium hirsutum. Wang, Yingying,Feng, Shouli,Li, Sai,Tang, Dong,Chen, Yu,Chen, Yu,Zhou, Baoliang,Chen, Yu,Chen, Yu. 2018

[6]Quantitative trait loci mapping for yield and its components by using two immortalized populations of a heterotic hybrid in Gossypium hirsutum L.. Liu, Renzhong,Wang, Baohua,Guo, Wangzhen,Qin, Yongsheng,Zhang, Yuanming,Zhang, Tianzhen,Liu, Renzhong,Wang, Liguo. 2012

[7]Analysis of differentially expressed genes in response to endogenous cytokinins during cotton leaf senescence. P. ZHAO,N. ZHANG,Z.J. YIN,Y.D. LIU,F.F. SHEN. 2013

[8]QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Fu-Ding Sun,Jian-Hong Zhang,Shu-Fang Wang,Wan-Kui Gong,Yu-Zhen Shi,Ai-Ying Liu,Jun-Wen Li,Ju-Wu Gong,Hai-Hong Shang,You-Lu Yuan.

[9]Genomic organization, differential expression, and functional analysis of the SPL gene family in Gossypium hirsutum. Zhang, Xiaohong,Dou, Lingling,Pang, Chaoyou,Song, Meizhen,Wei, Hengling,Fan, Shuli,Wang, Chengshe,Yu, Shuxun. 2015

[10]Differential gene expression of cotton cultivar CCRI24 during somatic embryogenesis. Xiuming Wu,Fuguang Li#2;,Chaojun Zhang,Chuanliang Liu,Xueyan Zhang.

[11]Detection of DNA ladder during cotyledon senescence in cotton. Q.E. XIE,I.D. LIU,S.X. YU,R.F. WANG,Z.X. FAN,Y.G. WANG,F.F. SHEN.

[12]Improved salt tolerance and delayed leaf senescence in transgenic cotton expressing the Agrobacterium IPT gene. Y.D. Liu,Z.J. Yin,J.W. YU,J. LI,H.L. WEI,X.L. HAN,F.F. SHEN.

[13]Functional characterization of GhSOC1 and GhMADS42 homologs from upland cotton (Gossypium hirsutum L.). Xiaohong Zhang,Jianghui wei,Shuli Fan,Meizhen Song,Chaoyou Pang,Hengling Wei,Chengshe Wang,Shuxun Yu. 2016

[14]IDENTIFICATION OF EXOTIC GENETIC COMPONENTS AND DNA METHYLATION PATTERN ANALYSIS OF THREE COTTON INTROGRESSION LINES FROM Gossypium bickii. Shou Pu He,Jun Ling Sun,Chao Zhang,Xiong Ming Du.

[15]Proteomic Analysis of Differences in Fiber Development between Wild and Cultivated Gossypium hirsutum L.. Yuan Qin,Yu, Shuxun,Hengling Wei,Huiru Sun,Pengbo Hao,Hantao Wang,Junji Su,Shuxun Yu.

[16]Gene expression profiling in shoot apical meristem of Gossypium hirsutum. M. Wu,J. Li,S. L. Fan,M. Z. Song,C. Y. Pang,J. H. Wei,J. W. Yu,J. F. Zhang,S. X. Yu. 2015

[17]Genome-wide analysis of WOX genes in upland cotton and their expression pattern under different stresses. Zhaoen Yang,Qian Gong,Wenqiang Qin,Qin, Wenqiang,Yang, Zhaoen,Zuoren Yang,Yuan Cheng,Lili Lu,Xiaoyang Ge,Chaojun Zhang,Zhixia Wu,Fuguang Li. 2017

[18]Comparative transcriptome analysis of cotton fiber development of Upland cotton (Gossypium hirsutum) and Chromosome Segment Substitution Lines from G. hirsutum x G. barbadense. Peng-tao Li,Mi Wang,Guo, Xiao-ping,Shi, Yu-zhen,Yuan, You-lu,Quan-wei Lu,Qun Ge,Md. Harun or Rashid,Ai-ying Liu,Ju-wu Gong,Hai-hong Shang,Wan-kui Gong,Jun-wen Li,Wei-wu Song,Li-xue Guo,Wei Su,Shao-qi Li,Xiao-ping Guo,Yu-zhen Shi,You-lu Yuan. 2017

[19]iTRAQ Protein Profile Differential Analysis between Somatic Globular and Cotyledonary Embryos Reveals Stress, Hormone, and Respiration Involved in Increasing Plant let Regeneration of Gossypium hirsutum L.. Xiaoyang Ge,Chaojun Zhang,Qianhua Wang,Zuoren Yang,Ye Wang,Xueyan Zhang,Zhixia Wu,Yuxia Hou,Jiahe Wu,Fuguang Li.

[20]Identification of candidate thermotolerance genes during early seedling stage in upland cotton (Gossypium hirsutum L.) revealed by comparative transcriptome analysis. Peng, Zhen,Cao, Moju,Xu, Jie,Lu, Yanli,Peng, Zhen,He, Shoupu,Gong, Wenfang,Sun, Junling,Pan, Zhaoe,Du, Xiongming,Sun, Gaofei.

作者其他论文 更多>>