Determination of high concentration nicotinic amide by near infrared spectrocopy

文献类型: 外文期刊

第一作者: Feng, H

作者: Feng, H;Xu, ZD;Wu, HX;Jiang, Y

作者机构:

关键词: nicotinic amide;partial least squares regression;near infrared spectroscopy

期刊名称:CHINESE JOURNAL OF ANALYTICAL CHEMISTRY ( 影响因子:1.134; 五年影响因子:0.909 )

ISSN: 0253-3820

年卷期: 2001 年 29 卷 12 期

页码:

收录情况: SCI

摘要: In the range of 9001 similar to 8060 cm(-1) and 7443 similar to 7144 cm(-1) first-order derivative near infrared spectra were used for quick determination of high concentration nicotinic amide. Vector normalization data pretreatment and partial least squares regression method were used to resolve the overlapping spectra of nicotinic amide as well as the alcohol solvent. 54 samples were taken as the calibration set getting a correlation coefficient of 0.997 at factor number of 4. The linear range is from 0.13 mol/L to 0.70 mol/L nicotinic amide. The relative deviations for the prediction results were < 2. 3% ( n = 9). The method gives satisfactory results for the sample analysis. Some factors influencing the precision of regression analysis were also discussed.

分类号:

  • 相关文献

[1]Comparison of two methods for monitoring leaf total chlorophyll content (LTCC) of wheat using field spectrometer data. Jin, X.,Wang, K.,Li, S.,Jin, X.,Diao, W.,Xiao, C.,Wang, K.,Li, S.,Wang, F.,Chen, B..

[2]Bacterial communities and volatile compounds in Doubanjiang, a Chinese traditional red pepper paste. Dong, L.,Huang, Q.,Wang, X..

[3]Rapid and non-destructive identification of water-injected beef samples using multispectral imaging analysis. Liu, Jinxia,Pan, Wenjuan,Ma, Fei,Liu, Changhong,Chen, Wei,Zheng, Lei,Cao, Yue,Zheng, Lei,Wang, Qiu,Yang, Jianbo. 2016

[4]Estimating Wheat Grain Protein Content Using Multi-Temporal Remote Sensing Data Based on Partial Least Squares Regression. Li Cun-jun,Wang Ji-hua,Wang Qian,Wang Da-cheng,Song Xiao-yu,Wang Yan,Huang Wen-jiang,Li Cun-jun,Wang Ji-hua,Huang Wen-jiang. 2012

[5]Leaf nitrogen spectral reflectance model of winter wheat (Triticum aestivum) based on PROSPECT: simulation and inversion. Yang, Guijun,Zhao, Chunjiang,Sun, Chenhong,Yang, Guijun,Zhao, Chunjiang,Feng, Haikuan,Li, Zhenhai,Li, Heli,Pu, Ruiliang. 2015

[6]Improvement on enhanced Monte-Carlo outlier detection method. Zhang, Liangxiao,Wang, Du,Li, Peiwu,Zhang, Wen,Mao, Jin,Yu, Li,Ding, Xiaoxia,Zhang, Qi,Zhang, Wen,Li, Peiwu,Zhang, Qi,Zhang, Liangxiao,Li, Peiwu,Mao, Jin,Ding, Xiaoxia,Zhang, Liangxiao,Wang, Du,Li, Peiwu,Zhang, Wen,Yu, Li,Zhang, Liangxiao,Gao, Rongrong.

[7]Feasibility of SSC Prediction for Navel Orange Based on Origin Recognition Using NIR Spectroscopy. Lyu, Qiang,Liao, Qiuhong,Liu, Yanli,Lyu, Qiang,Lan, Yubin. 2015

[8]The influence of soil particle sizes on hyperspectral prediction of soil organic matter content. Yao, Yanmin,Si, Haiqing,Wang, Deying,Huang, Qing,Chen, Zhongxin,Liu, Ying. 2015

[9]Near Infrared Spectrum Detection Method for Moisture Content of Populus Euphratica Leaf. Bai Tie-Cheng,Wang Ya-ming,Zhang Nan-nan,Yao Na,Yu Cai-li,Bai Tie-Cheng,Wang Xing-peng,Wang Xing-peng. 2017

[10]Estimation of Winter Wheat Above-Ground Biomass Using Unmanned Aerial Vehicle-Based Snapshot Hyperspectral Sensor and Crop Height Improved Models. Yue, Jibo,Yang, Guijun,Li, Zhenhai,Wang, Yanjie,Feng, Haikuan,Xu, Bo,Yue, Jibo,Yue, Jibo,Li, Changchun,Wang, Yanjie,Yang, Guijun,Li, Zhenhai,Wang, Yanjie,Feng, Haikuan,Xu, Bo,Yang, Guijun,Li, Zhenhai,Xu, Bo. 2017

[11]Estimation of leaf chlorophyll content in winter wheat using variable importance for projection (VIP) with hyperspectral data. He, Peng,Xu, Xingang,Li, Zhenhai,Feng, Haikuan,Yang, Guijun,Zhang, Yongfeng,He, Peng,Xu, Xingang,Li, Zhenhai,Feng, Haikuan,Yang, Guijun,Zhang, Yongfeng,He, Peng,He, Peng,Zhang, Baolei. 2015

[12]Comparison of Four Chemometric Techniques for Estimating Leaf Nitrogen Concentrations in Winter Wheat (Triticum Aestivum) Based on Hyperspectral Features. Li, Zh.,Wei, Ch.,Wang, J.,Li, Zh.,Nie, Ch.,Xu, X.,Song, X.,Li, Zh.,Nie, Ch.,Xu, X.,Song, X.,Wang, J..

[13]Determination of Chinese honey adulterated with high fructose corn syrup by near infrared spectroscopy. Chen, Lanzhen,Ye, Zhihua,Chen, Lanzhen,Xue, Xiaofeng,Zhou, Jinghui,Chen, Fang,Zhao, Jing.

[14]Determination of internal qualities of Newhall navel oranges based on NIR spectroscopy using machine learning. Liu, Cong,Yang, Simon X.,Liu, Cong,Deng, Lie.

[15]Classification of Chinese honeys according to their floral origin by near infrared spectroscopy. Ye, Zhihua,Chen, Lanzhen,Zhao, Jing,Xue, Xiaofeng,Wang, Jiahua,Sun, Qian,Vander Heyden, Yvan.

[16]The Detection of Soluble Solid Contents and Conductivity of Apple Juice by Homemade Near Infrared Spectrometer. Zhu, Dazhou,Ma, Zhihong,Lu, Anxiang,Zhao, Liu,Wang, Cheng,Pan, Ligang,Zhu, Dazhou,Ma, Zhihong,Lu, Anxiang,Zhao, Liu,Pan, Ligang,Tu, Zhenhua.

[17]Variable selection based near infrared spectroscopy quantitative and qualitative analysis on wheat wet gluten. Lu, Chengxu,Zhang, Yinqiao,Wei, Chongfeng,Mao, Wenhua,Jiang, Xunpeng,Zhou, Xingfan,Zhang, Naiqian. 2017

[18]Temperature Compensation for Portable Vis/NIR Spectrometer Measurement of Apple Fruit Soluble Solids Contents. Li Yong-yu,Wang Jia-hua,Qi Shu-ye,Tang Zhi-hui,Jia Shou-xing. 2012

[19]Research on Error Reduction of Path Change of Liquid Samples Based on Near Infrared Trans-Reflective Spectra Measurement. Wang Ya-hong,Dong Da-ming,Zheng Wen-gang,Wang Wen-zhong,Wang Ya-hong,Zhou Ping,Ye Song,Wang Wen-zhong. 2014

[20]Research on Optimization of Wheat Seed Germination Rate NIR Model Based on Si-cPLS. Wu Jing-Zhu,Dong Wen-Fei,Dong Jing-Jing,Chen Yan,Mao Wen-Hua,Liu Cui-Ling,Wu Jing-Zhu,Mao Wen-Hua. 2017

作者其他论文 更多>>