RFLP detection of genetic variation of maize inbred lines

文献类型: 外文期刊

第一作者: Li, XH

作者: Li, XH;Fu, JH;Zhang, SH;Yuan, LX;Li, MS

作者机构:

关键词: Zea mays;restriction fragment length polymorphisms (RFLPs);genetic similarity (GS);heterotic group

期刊名称:ACTA BOTANICA SINICA ( 影响因子:0.599; )

ISSN: 0577-7496

年卷期: 2000 年 42 卷 11 期

页码:

收录情况: SCI

摘要: Genetic similarities of 13 inbred lines of maize (Zea mays L.) were analyzed by restriction fragment length polymorphisms (RFLPs). The objectives of the study were to detect genetic similarities among 13 inbreds and to assign them to heterotic groups. By means of 24 probe-enzyme combinations (PECs) selected for locus specificity, clear patterns and reproducibility, 85 alleles were found with an average of 3.3 alleles per locus. The allelic frequency data were used to estimate genetic similarities among lines, and as a result the diversity index of 0.499 was obtained. Genetic similarities between the pairs of 13 lines ranged from 0.523 up to 0.802 with an average of 0.649. The UPGMA clustering algorithm analysis classified the 13 lines into five groups, which generally corresponded to known maize heterotic groups based on pedigree information. The authors concluded that RRLP-based markers could be used for investigating genetic relationships between maize inbred lines and assigning them to heterotic groups, but it seemed that a large number of PECs were needed to obtain reliable estimates of genetic similarity.

分类号:

  • 相关文献

[1]Comparisons of four testers in evaluating 27 CIMMYT and Chinese maize populations. Li, M. S.,Li, X. H.,Deng, L. W.,Zhang, D. G.,Bai, L.,Zhang, S. H.. 2007

[2]Breeding potential of US maize germplasm for utilization in Chinese temperate conditions. Yong, Hongjun,Zhang, Xiaocong,Zhang, Degui,Zhang, Huanxin,Li, Mingshun,Weng, Jianfeng,Hao, Zhuanfang,Ci, Xiaoke,Bai, Li,Li, Xinhai,Zhang, Shihuang,Wang, Jianjun,Liu, Wenguo.

[3]Expression of Foreign Genes Demonstrates the Effectiveness of Pollen-Mediated Transformation in Zea mays. Yang, Liyan,Cui, Guimei,Wang, Yixue,Hao, Yaoshan,Du, Jianzhong,Wang, Changbiao,Zhang, Huanhuan,Wu, Shu-Biao,Sun, Yi,Yang, Liyan,Zhang, Hongmei,Wu, Shu-Biao,Sun, Yi. 2017

[4]Establishment of a core collection for maize germplasm preserved in Chinese National Genebank using geographic distribution and characterization data. Li, Y,Shi, YS,Cao, YS,Wang, TY. 2004

[5]Genome-wide association study (GWAS) of resistance to head smut in maize. Wang, Ming,Yan, Jianbing,Zhang, Xiaobo,Xiao, Yannong,Zheng, Yonglian,Zhao, Jiuran,Song, Wei. 2012

[6]Analysis of Extreme Phenotype Bulk Copy Number Variation (XP-CNV) Identified the Association of rp1 with Resistance to Goss's Wilt of Maize. Hu, Ying,Ren, Jie,Umana, Arnoldo A.,Le, Ha,Danilova, Tatiana,Liu, Sanzhen,Peng, Zhao,White, Frank F.,Fu, Junjie,Wang, Haiyan,Robertson, Alison,Hulbert, Scot H.,Umana, Arnoldo A.. 2018

[7]Maize ZmRACK1 Is Involved in the Plant Response to Fungal Phytopathogens. Wang, Baosheng,Yu, Jingjuan,Zhu, Dengyun,Chang, Yujie,Zhao, Qian,Wang, Baosheng. 2014

[8]Identification of a major quantitative trait locus for ear size induced by space flight in sweet corn. Yu, Y. T.,Li, G. K.,Yang, Z. L.,Hu, J. G.,Zheng, J. R.,Qi, X. T.. 2014

[9]A screening method for detecting simple sequence repeat (SSR) polymorphism of Zea mays using high-resolution melting-curve analysis. Jiang, Y.,Tan, H.,Li, Y. D.,Yu, R. H.,Wang, S.,Li, X. H.,Shan, X. H.. 2011

[10]Identification of Drought Tolerant Mechanisms in Maize Seedlings Based on Transcriptome Analysis of Recombination Inbred Lines. Min, Haowei,Chen, Chengxuan,Wei, Shaowei,Shang, Xiaoling,Sun, Meiyun,Xia, Ran,Chen, Huabang,Xie, Qi,Min, Haowei,Chen, Chengxuan,Wei, Shaowei,Shang, Xiaoling,Sun, Meiyun,Xia, Ran,Chen, Huabang,Xie, Qi,Liu, Xiangguo,Hao, Dongyun. 2016

[11]Differences in maize physiological characteristics, nitrogen accumulation, and yield under different cropping patterns and nitrogen levels. Zhang, Xiangqian,Huang, Guoqin,Zhao, Qiguo. 2014

[12]Isolation and characterization of induced genes under drought stress at the flowering stage in maize (Zea mays). Li, Hui-Yong,Wang, Tian-Yu,Shi, Yun-Su,Fu, Jun-Jie,Song, Yan-Chun,Wang, Guo-Ying,Li, Yu.

[13]Relationships between soil respiration and photosynthesis-related spectral vegetation indices in two cropland ecosystems. Huang, Ni,Niu, Zheng,Zhan, Yulin,Xu, Shiguang,Wu, Chaoyang,Gao, Shuai,Hou, Xuehui,Cai, Dewen,Huang, Ni,Xu, Shiguang,Hou, Xuehui,Cai, Dewen,Tappert, Michelle C.,Huang, Wenjiang.

[14]Development of SNP-based dCAPS markers linked to major head smut resistance quantitative trait locus qHS2.09 in maize. Di, Hong,Liu, Xianjun,Wang, Qiankun,Zhang, Lin,Wang, Zhenhua,Weng, Jianfeng,Li, Xinhai.

[15]Ustilago maydis reprograms cell proliferation in maize anthers. Gao, Li,Gao, Li,Kelliher, Timothy,Nguyen, Linda,Walbot, Virginia.

[16]Molecular Mapping of the Major Resistance Quantitative Trait Locus qHS2.09 with Simple Sequence Repeat and Single Nucleotide Polymorphism Markers in Maize. Weng, Jianfeng,Hao, Zhuanfang,Xie, Chuanxiao,Li, Mingshun,Zhang, Degui,Bai, Li,Liu, Changlin,Zhang, Shihuang,Li, Xinhai,Liu, Xianjun,Wang, Zhenhua,Zhang, Lin,Wang, Jianjun.

[17]Genome-wide identification of genes involved in raffinose metabolism in Maize. Zhou, Mei-Liang,Zhang, Qian,Zhou, Ming,Shao, Ji-Rong,Zhou, Mei-Liang,Sun, Zhan-Min,Tang, Yi-Xiong,Wu, Yan-Min,Zhu, Xue-Mei.

[18]Identification of Quantitative Trait Loci (QTLs) for Flowering Time Using SSR Marker in Maize under Water Stress. Xiao, YN,Li, XH,Zhang, SH,Wang, XD,Li, MS,Zheng, YL.

[19]High-throughput sequencing reveals bacterial community composition in the rhizosphere of the invasive plant Flaveria bidentis. Song, Z.,Zhang, R. H.,Fu, W. D.,Zhang, T.,Yan, J.,Zhang, G. L..

[20]Floral transition in maize infected with Sporisorium reilianum disrupts compatibility with this biotrophic fungal pathogen. Zhang, Shaopeng,Xiao, Yannong,Zheng, Yonglian,Gardiner, Jack,Zhao, Jiuran,Wang, Fengge.

作者其他论文 更多>>