Enriching Glucoraphanin in Brassica rapa Through Replacement of BrAOP2.2/BrAOP2.3 with Non-functional Genes

文献类型: 外文期刊

第一作者: Liu, Zhiyuan

作者: Liu, Zhiyuan;Liang, Jianli;Zheng, Shuning;Zhang, Jifang;Wu, Jian;Cheng, Feng;Wang, Xiaowu;Liu, Zhiyuan;Yang, Wencai

作者机构:

关键词: Brassica rapa;glucosinolate;glucoraphanin;BrAOP2;Marker-assisted backcrossing

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2017 年 8 卷

页码:

收录情况: SCI

摘要: Sulforaphane, the hydrolytic product of glucoraphanin glucosinolate, is a potent anticarcinogen that reduces the risk of several human cancers. However, in most B. rapa vegetables, glucoraphanin is undetectable or only present in trace amounts, since the glucoraphanin that is present is converted to gluconapin by three functional BrAOP2 genes. In this study, to enrich beneficial glucoraphanin content in B. rapa, the functional BrAOP2 alleles were replaced by non-functional counterparts through marker-assisted backcrossing (MAB). We identified non-functional mutations of two BrAOP2 genes from B. rapa. The backcross progenies with introgression of both non-functional braop2.2 and braop2.3 alleles significantly increased the glucoraphanin content by 18 times relative to the recurrent parent. In contrast, replacement or introgression of single non-functional braop2.2 or braop2.3 locus did not change glucoraphanin content. Our results suggest that replacement of these two functional BrAOP2 genes with non-functional alleles has the potential for producing improved Brassica crops with enriched beneficial glucoraphanin content.

分类号:

  • 相关文献

[1]Three genes encoding AOP2, a protein involved in aliphatic glucosinolate biosynthesis, are differentially expressed in Brassica rapa. Zhang, Jifang,Liu, Zhiyuan,Liang, Jianli,Wu, Jian,Cheng, Feng,Wang, Xiaowu.

[2]The ability to manipulate plant glucosinolates and nutrients explains the better performance of Bemisia tabaci Middle East-Asia Minor 1 than Mediterranean on cabbage plants. Cui, Hongying,Guo, Litao,Wang, Shaoli,Xie, Wen,Wu, Qingjun,Zhang, Youjun,Jiao, Xiaoguo. 2017

[3]Comparative analysis of MYB28 homologs and development of a MYB28-specific marker in Brassica napus L.. Long, Yan,Zhang, Jinwen,Wang, Jiao,Pei, Xinwu,Long, Yan,Wang, Jing,Wang, Yanyan.

[4]Aromatic Glucosinolate Biosynthesis Pathway in Barbarea vulgaris and its Response to Plutella xylostella Infestation. Liu, Tongjin,Zhang, Xiaohui,Yang, Haohui,Qiu, Yang,Wang, Haiping,Shen, Di,Song, Jiangping,Li, Xixiang,Agerbirk, Niels,Agerbirk, Niels. 2016

[5]De novo Transcriptome Analysis of Sinapis alba in Revealing the Glucosinolate and Phytochelatin Pathways. Zhang, Xiaohui,Liu, Tongjin,Duan, Mengmeng,Song, Jiangping,Li, Xixiang. 2016

[6]Associative Transcriptomics Study Dissects the Genetic Architecture of Seed Glucosinolate Content in Brassica napus. Lu, Guangyuan,Harper, Andrea L.,Bancroft, Ian,Lu, Guangyuan,Trick, Martin,Morgan, Colin,Fraser, Fiona,O'Neill, Carmel.

[7]VARIATION OF SULFORAPHANE LEVELS IN BROCCOLI (BRASSICA OLERACEA VAR. ITALICA) DURING FLOWER DEVELOPMENT AND THE ROLE OF GENE AOP2. Li, Zhansheng,Liu, Yumei,Fang, Zhiyuan,Yang, Limei,Zhuang, Mu,Zhang, Yangyong,Sun, Peitian,Zhao, Wen.

[8]Glucosinolates in Chinese Brassica campestris vegetables: Chinese cabbage, purple cai-tai, choysum, pakehoi, and turnip. Chen, Xinjuan,Zhu, Zhujun,Zhu, Zhujun,Chen, Xinjuan,Gerendas, Joska,Zimmermann, Nadine. 2008

[9]Development and Validation of High-glucoraphanin Broccoli F-1 Hybrids and Parental Lines. Gu, Honghui,Wang, Jiansheng,Yu, Huifang,Zhao, Zhenqing,Sheng, Xiaoguang,Chen, Jisuan,Xu, Yingjun. 2014

[10]Root-knot nematodes induce pattern-triggered immunity in Arabidopsis thaliana roots. Teixeira, Marcella A.,Kaloshian, Isgouhi,Wei, Lihui,Kaloshian, Isgouhi.

[11]Influence of leaf-cover on visual quality and health-promoting phytochemicals in loose-curd cauliflower florets. Wang, Jiansheng,Zhao, Zhenqing,Sheng, Xiaoguang,Yu, Huifang,Gu, Honghui.

[12]Myrosinases from root and leaves of Arabidopsis thaliana have different catalytic properties. Andersson, Derek,Bejai, Sarosh,Meijer, Johan,Chakrabarty, Romit,Zhang, Jiaming,Rask, Lars.

[13]Genotypic variation of glucosinolates in broccoli (Brassica oleracea var. italica) florets from China. Wang, Jiansheng,Gu, Honghui,Yu, Huifang,Zhao, Zhenqing,Sheng, Xiaoguang,Zhang, Xiaohui.

[14]Trichokonins from Trichoderma pseudokoningii SMF2 induce resistance against Gram-negative Pectobacterium carotovorum subsp carotovorum in Chinese cabbage. Li, Hai-Yun,Luo, Yan,Shi, Wei-Ling,Gong, Zhi-Ting,Shi, Mei,Chen, Xiu-Lan,Zhang, Yu-Zhong,Song, Xiao-Yan,Li, Hai-Yun,Zhang, Xiu-Sheng,Chen, Lei-Lei. 2014

[15]Molecular characterization of novel haplotypes of eIF4E family in Chinese cabbage (Brassica rapa L. ssp pekinensis). Liu, Shuan-Tao,Zhang, Zhi-Gang,Li, Qiao-Yun,Wang, Shu-Fen,Zhao, Zhi-Zhong,Lu, Jin-Dong,Xu, Wen-Ling,Liu, Xian-Xian,Fu, Wei-Min. 2013

[16]Cadmium Disrupts the Balance between Hydrogen Peroxide and Superoxide Radical by Regulating Endogenous Hydrogen Sulfide in the Root Tip of Brassica rapa. Lv, Wenjing,Shi, Zhiqi,Chen, Jian,Lv, Wenjing,Yang, Lifei,Lv, Wenjing,Shi, Zhiqi,Chen, Jian,Xu, Cunfa,Shao, Jinsong,Xian, Ming. 2017

[17]Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa. Lou, Ping,Zhao, Jianjun,Del Carpio, Dunia Pino,Bonnema, Guusje,Zhao, Jianjun,Shen, Shuxing,Song, Xiaofei,Zhao, Jianjun,Wang, Xiaowu,Kim, Jung Sun,Jin, Mina,Zhao, Jianjun,Koornneef, Maarten,Zhao, Jianjun,Vreugdenhil, Dick,Koornneef, Maarten. 2007

[18]Comprehensive analysis of RNA-seq data reveals the complexity of the transcriptome in Brassica rapa. Tong, Chaobo,Yu, Jingyin,Huang, Junyan,Dong, Caihua,Hua, Wei,Liu, Shengyi,Wang, Xiaowu,Wu, Jian,Li, Wanshun. 2013

[19]A semi-fertile interspecific hybrid of Brassica rapa and B. nigra and the cytogenetic analysis of its progeny. Sheng, Xiaoguang,Wen, Guiju,Zhao, Hong,Liu, Fan,Sheng, Xiaoguang,Wen, Guiju,Guo, Yangdong,Yan, Hong. 2012

[20]Cytogenetics and germplasm enrichment in Brassica allopolyploids in China. Li Zai-yun,Wang You-ping,Wang You-ping. 2017

作者其他论文 更多>>